HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
b. ta có:
\(x^2+y^2+z^2-\left(2xy-2zx+2yz\right)\)
\(=x^2+y^2+z^2-2xy-2zx+2yz\)
\(=\left(x-y+z\right)^2\ge0\)
do đó \(x^2+y^2+z^2\ge2xy-2xz+2yz\)
a.ta có:
\(x^2+y^2+z^2-\left(xy+yz+zx\right)\)
\(=\frac{1}{2}\left[\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)\right]\)
\(=\frac{1}{2}\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\ge0\)
vì \(\left(x-y\right)^2\ge0,\left(y-z\right)^2\ge0,\left(z-x\right)^2\ge0\)
do đó :
\(x^2+y^2+z^2\ge xy+yz+zx\)
dấu = xảy ra khi và chỉ khi x-y-z
b. \(x^3+3x^2-4\) =\(x^3-x^2+4x^2-4\)
=\(x^2\left(x-1\right)+4\left(x-1\right)\left(x^2+4x+4\right)\)
=\(\left(x-1\right)\left(x+2\right)^2\)
a+1