Có 15 số chẵn không vượt quá 30
+Ta có :\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\)\(=\dfrac{x+y+z}{a+b+c}=\dfrac{x+y+z}{1}\)(vì a + b+c =1)
=>\(\left(\dfrac{x^2}{a^2}\right)=\left(\dfrac{y^2}{b^2}\right)=\left(\dfrac{z^2}{c^2}\right)=\dfrac{\left(x+y+z\right)2}{1}\)(1)
+Vì \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\)
=>\(\dfrac{x^2}{a^2}=\dfrac{y^2}{b^2}=\dfrac{z^2}{c^2}\) Áp dụng tính chất của dãy tỉ số bằng nhau ta có:\(\dfrac{x^2}{a^2}=\dfrac{y^2}{b^2}=\dfrac{z^2}{c^2}=\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}=\dfrac{x^2+y^2+z^2}{1}\)(vì a2 + b2 + c2 =1 ) (2)
Từ (1) và(2)=> ( x + y + z )2 = x2 + y2 + z2.
Vậy.........
trong sách nâng cao và phát triển toán 7
1b;2a;3c