Điều kiện x, y dương. Hệ phương trình tương đương với hệ :
\(\begin{cases}\log_2\left(x+3\right)=2\left(1+\log_3y\right)\\2\left(1+\log_3x\right)=\log_2\left(y+3\right)\end{cases}\) (*)
Cộng vế với vế 2 phương trình của hệ (*) ta có :
\(\log_2\left(x+3\right)+2\log_3x=\log_2\left(y+3\right)+2\log_3y\)
Xét hàm số :
\(f\left(t\right)=\log_2\left(t+3\right)+2\log_3t\) trên miền \(\left(0;+\infty\right)\).
Dễ thấy hàm số luôn đồng biến trên \(\left(0;+\infty\right)\)., mà \(f\left(x\right)=f\left(y\right)\) nên \(x=y\).
Thay vào một trong hai phương trình của hệ (*), ta được
\(\log_2\left(x+3\right)=2\left(1+\log_3x\right)\)
hay
\(x+3=2^{2\left(1+\log_3x\right)}=4.2^{\log_3x^2}=4.2^{\log_32.\log_2x^2}=4\left(2^{\log_2x^2}\right)^{\log_32}\)
\(\Leftrightarrow x+3=4.x\log^{\log_34}\)
\(\Leftrightarrow x^{1-\log_34}+3.x^{-\log_34}=4\) (**)
Xét
\(g\left(x\right)=x^{1-\log_34}+3.x^{-\log_34}\) trên khoảng( \(0:+\infty\)), ta có :
\(g'\left(x\right)=\left(1-\log_34\right)x^{-\log_34}-3.\log_34x^{-1-\log_34}\)
Thấy ngay \(g'\left(x\right)<0\) với mọi \(x\in\left(0;+\infty\right)\), do đó \(g\left(x\right)\)nghịch biến trên \(\left(0;+\infty\right)\)
Mặt khác \(g\left(1\right)=4\) vậy x=1 là nghiệm duy nhất của phương trình (**)
Hệ phương trình đã cho có nghiệm duy nhất là (1;1)