Học tại trường Chưa có thông tin
Đến từ Chưa có thông tin , Chưa có thông tin
Số lượng câu hỏi 44
Số lượng câu trả lời 76
Điểm GP 19
Điểm SP 122

Người theo dõi (224)

Đang theo dõi (0)


Câu trả lời:

a. Do \(\left(-2\right)+1-3+1=-3< 0\)

    và  \(4+\left(-5\right)-6+1=-6< 0\)

nên A, B  ở về cùng 1 phía của mặt phẳng (P). Do đó điểm \(C\in\left(P\right)\) sao cho \(CA+CB\) nhỏ nhất chính là giao điểm của đoạn AB với mặt phẳng (P), trong đó A' là điểm đối xứng với A qua mặt phẳng (P)

Giả sử \(A'\left(x;y;z\right)\) do A' đối xứng với A qua mặt phẳng (P) nên ta có hệ phương trình :

\(\begin{cases}\frac{x-2}{2}+\frac{y+2}{2}-\frac{zx+2}{2}+1=0\\\frac{x-2}{1}=\frac{y-1}{1}=\frac{z-3}{-1}\end{cases}\)

Giải hệ ta được \(x=0;y=3;z=1\)

Do đó \(A'\left(0;3;1\right)\)

Gọi \(C\left(x;y;z\right)\) là giao điểm của A'B với (P). Khi đó tọa độ của C' thỏa mãn phương tringf của (P) và hai vecto \(\overrightarrow{A'C};\overrightarrow{A'B}\) cùng phương. Do đó, ta có hệ phương trình :

\(\begin{cases}x+y-z+1=0\\\frac{x-0}{4-0}=\frac{y-3}{-5-3}=\frac{z-1}{6-1}\end{cases}\)

Từ phương trình thứ 2 suy ra \(y=-2x+3\) và \(z=\frac{5}{4}x+1\)

Thay vào phương trình thứ nhất ta được \(x=\frac{3}{4}\). Từ đó tìm được \(y=\frac{3}{2}\) và \(z=\frac{31}{16}\)

Vậy điềm \(C\) cần tìm là \(C\left(\frac{3}{4};\frac{3}{2};\frac{31}{16}\right)\)

 

b. Gọi I là trung điểm của AB. Khi đó \(I\left(1;-2;\frac{9}{2}\right)\) và với mọi điểm D đều có \(\overrightarrow{DA}+\overrightarrow{DB}=2\overrightarrow{DI}\)

Vậy \(D\in\left(P\right):\left|\overrightarrow{DA}+\overrightarrow{DB}\right|\) bé nhất \(\Leftrightarrow\) D là hình chiếu của I trên mặt phẳng (P)

Gọi \(\left(x;y;z\right)\) là tọa độ của hình chiếu điểm I trên (P). Khi đó ta có hệ phương trình :

\(\begin{cases}x+y-z+1=0\\\frac{x-1}{1}=\frac{y+2}{1}=\frac{z-\frac{9}{2}}{-1}\end{cases}\)

Giải hệ ta thu được : 

\(x=\frac{5}{2};y=-\frac{1}{2};z=3\)

Vậy điểm \(D\in\left(P\right)\) sao cho \(\overrightarrow{DA}+\overrightarrow{DB}\) có độ dài nhỏ nhất là \(D\left(\frac{5}{2};-\frac{1}{2};3\right)\)

Câu trả lời:

a. \(\log_{2011}2012\)  và \(\log_{2012}2013\)

Ta luôn có : \(\log_n\left(n+1\right)>\log_{n+1}\left(n+2\right)\) với mọi \(n>1\) (*)

Thật vậy : 

- Ta có : \(\left(n+1\right)^2=n\left(n+2\right)+1>n\left(n+2\right)>1\Rightarrow\log_{n+1}\left(n+1\right)^2>\log_{n+1}\left[n\left(n+2\right)\right]\)

hay :

\(2>\log_{n+1}n+\log_{n+1}\left(n+2\right)\) (1)

- Áp dụng Bất đẳng thức Cauchy, ta có : 

\(\log_{n+1}n+\log_{n+1}\left(n+1\right)>2\sqrt{\log_{n+1}n.\log_{n+1}\left(n+2\right)}\)  (2)

((2) không xảy ra dấu "=" vì \(\log_{n+1}n\ne\log_{n+1}\left(n+2\right)\) )

- Từ (1) và (2) \(\Rightarrow2>2\sqrt{\log_{n+1}n.\log_{n+1}\left(n+2\right)}\)

                      \(\Rightarrow1>\log_{n+1}n.\log_{n+1}\left(n+2\right)\)

                      \(\Leftrightarrow\frac{1}{\log_{n+1}n}>\log_{n+1}\left(n+2\right)\)

                      \(\Leftrightarrow\log_n\left(n+1\right)>\log_{n+1}\left(n+2\right)\)

Áp dụng (*) với \(n=2011\Rightarrow\log_{2011}2012>\log_{2012}2013\)

 

b. \(\log_{13}150\) và \(\log_{17}290\)

Ta có : \(\log_{12}150< \log_{13}169=2=\log_{17}289< \log_{17}290\Rightarrow\log_{13}150< \log_{17}290\)

 

c. \(\log_34\) và \(\log_{10}11\)

Ta luôn có : \(\log_a\left(a+1\right)>\log_{a+1}\left(a+2\right)\) với \(0< a\ne1\) (*)

Tương tự câu (a), áp dụng liên tiếp (*) ta được :

\(\log_34>\log_45>\log_56>\log_67>\log_78>\log_89>\log_910>\log_{10}11\)

hay \(\log_34>\log_{10}11\)