Từ điểm A nằm ngoài đường tròn (O) kẻ tiếp tuyến AM với đường tròn (M là tiếp điểm). Kẻ dây MN vuông góc với AO tại H. Kẻ đường thẳng đi qua A cắt đường tròn tại B,C(điểm B nằm giữa A và C). Tiếp tuyến tại B và C của đường tròn (O) cắt nhau tại K, gọi I là trung điểm của BC. a) Chứng minh 4 điểm B,C,O,K cùng thuộc một đường tròn. b) Chứng minh AN là tiếp tuyến của đường tròn (O) c) Chứng minh OI.OK=ON² d) Chứng minh M,N,K thẳng hàng.
Cho điểm A nằm ngoài đường tròn (O). Quả A vẽ hai đường tiếp tuyến AB, AC với (O) (B,C là các tiếp điểm). a) Chứng minh các điểm A,B,C,O cùng thuộc một đường tròn, tìm tâm của đường tròn đó. b) Vẽ đường kính BE của (O), AE cắt (O) tại F (F khác E). Chứng minh OA vuông góc với BC tại M rồi từ đó suy ra OB²=OM.OA c) Gọi G là trung điểm của EF,OG cắt BC tại H. Chứng minh OM.OA=OG.OH d) Chứng minh EH là tiếp tuyến của đường tròn (O)