HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Cho ΔABC có \(\widehat{A}\) = 90°. E là trung điểm của AB.. Đường thẳng vuông góa với AB tại E cắt BC tại F.
a/ CMR: FA=FB
b/ Từ F vẽ FH ⊥ AC ( H ∈ AC ). Chứng minh FH⊥EF.
c/ Chứng minh FH = AE
d/ Chứng minh EH = \(\dfrac{BC}{2}\) ; EH//BC
Cho ΔABC có AB=AC. Lấy điểm E trên cạnh AB, F trên cạnh AC sao cho AE=AF.
a) Chứng minh: BF=CE và ΔBEC=ΔCFB.
b) BF cắt CE tại I. CMR: ΔIBE=ΔICF.
c) CMR: AI là tia phân giác của \(\widehat{BAC}\).
d) Gọi M là trung điểm của BC. CMR: A, I, M thẳng hàng.
Cho hình vẽ biết a//b. Hãy tính \(x\)?
a E G F b 42 113
Tình hợp lí (Bài 3)