HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Giải hệ phương trình\(\left\{{}\begin{matrix}x^2+y^2+xy+2x=5y\\\left(x^2+2x\right)\left(x+y-3\right)=-3y\end{matrix}\right.\)
Cho tam giác ABC cân tại A. Gọi AE là đường cao và F là hình chiếu của E lên cạnh AC, và D là trung điểm EF . Chứng minh AD vuông góc với EF.
Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD có AB :2x -y + 1 = 0, AC : x -y + 1 = 0 và M là trung điểm của CD thuộc đường thẳng 2x + y + 1 = 0 . Tìm tọa độ các đỉnh A, B, C, D
Giải hệ phương trình\(\left\{{}\begin{matrix}x-\sqrt{3y+1}=2\\\sqrt{3y+1}+4=3\sqrt{\left(x-2y\right)\left(y+1\right)}\end{matrix}\right.\)
Giải phương trình \(\sqrt{1-2x}+\sqrt{1+2x}=2-x^2\)
Cho a, b là hai số thực dương thỏa mãn a +b = 1. Chứng minh rằng:\(\dfrac{2+\sqrt{2a}}{2-a}+\dfrac{2+\sqrt{2b}}{2-b}\ge4\)