Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, \(\widehat{BAD}=60^0\), gọi I là giao điểm của hai đường chéo AC và BD. Hình chiếu vuông góc của S trên mặt phẳng (ABCD) là điểm H, sao cho H là trung điểm của BI. Góc giữa SC và mặt phẳng (ABCD) bằng 45 độ. Thể tích của khối chóp S.ABCD là :
- \(a^3\frac{\sqrt{39}}{12}\)
- \(a^3\frac{\sqrt{39}}{48}\)
- \(a^3\frac{\sqrt{39}}{24}\)
- \(a^3\frac{\sqrt{39}}{36}\)