Bài tập cuối chương IV

Bài 4.33 (SGK Kết nối tri thức với cuộc sống trang 87)

Hướng dẫn giải

Áp dụng định lí tổng ba góc trong tam giác,

+) Ta có:

\(\begin{array}{l}x + x + {20^o} + x + {10^o} = {180^o}\\ \Rightarrow 3x = {150^o}\\ \Rightarrow x = {50^o}\end{array}\)

+) Ta có:

\(\begin{array}{l}y + {60^o} + 2y = {180^o}\\ \Rightarrow 3y = {120^o}\\ \Rightarrow y = {40^o}\end{array}\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Bài 4.34 (SGK Kết nối tri thức với cuộc sống trang 87)

Hướng dẫn giải

Xét \(\Delta MNA\) và \(\Delta MNB \) có:

AM=BM (gt)

AN=BN (gt)

MN chung

=>\(\Delta MNA = \Delta MNB\) (c.c.c)

=>\(\widehat {MAN} = \widehat {MBN}\) (2 góc tương ứng)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Bài 4.35 (SGK Kết nối tri thức với cuộc sống trang 87)

Hướng dẫn giải

Xét 2 tam giác OAM và OBN có:

\(\widehat {OAM} = \widehat {OBN}\) (gt)

AO=BO (gt)

\(\widehat{O}\) chung

=>\(\Delta OAM = \Delta OBN\)(g.c.g)

=>AM=BN (2 cạnh tương ứng)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Bài 4.36 (SGK Kết nối tri thức với cuộc sống trang 87)

Hướng dẫn giải

Xét \(\Delta ANB \) và \(\Delta BMA\) có:

AN=BM (gt)

\(\widehat {BAN} = \widehat {ABM}\) (gt)

AB chung

=>\(\Delta ANB = \Delta BMA\)(c.g.c)

=> \(\widehat{ABN} = \widehat{BAM}\) (2 góc tương ứng)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Bài 4.37 (SGK Kết nối tri thức với cuộc sống trang 87)

Hướng dẫn giải

Vì M, N nằm trên đường trung trực của AB nên MA = MB ; NA = NB ( tính chất)

Mà MA = NA (gt)

Do đó, MA = NA = MB = NB.

Xét tam giác AMB và tam giác ANB có:

MA = NA (gt)

MB = NB (cmt)

AB chung

Do đó, ∆AMB = ∆ANB (c – c – c).

\(\Rightarrow \widehat{AMB}=\widehat{ANB}\) (2 góc tương ứng).

Vậy MB = NB và góc AMB bằng góc ANB.

(Trả lời bởi Kiều Sơn Tùng)
Thảo luận (1)

Bài 4.38 (SGK Kết nối tri thức với cuộc sống trang 87)

Hướng dẫn giải

a) Xét 2 tam giác vuông BAM và CAN có:

\(\widehat{BAM} = \widehat{CAM}(=90^0)\)

AB=AC (Do tam giác ABC cân tại A)

\(\widehat B = \widehat C\) (Do tam giác ABC cân tại A)

=>\(\Delta BAM = \Delta CAN\)(g.c.g)

b) Cách 1: 

Xét tam giác ABC cân tại A, có \(\widehat {A{\rm{ }}} = 120^\circ \) có:

\(\widehat B = \widehat C = \frac{{{{180}^o} - {{120}^o}}}{2} = {30^o}\).

Xét tam giác ABM vuông tại A có:

\(\widehat {B} + \widehat {BAM} + \widehat {AMB} = {180^o}\\ \Rightarrow {30^o} + {90^o} + \widehat {AMB} = {180^o}\\ \Rightarrow \widehat {AMB} = {60^o}\\ \Rightarrow \widehat {AMC} = {180^o} - \widehat {AMB} = {180^o} - {60^o} = {120^o}\)

Xét tam giác MAC có:

\(\begin{array}{l}\widehat {AMC} + \widehat {MAC} + \widehat C = {180^o}\\ \Rightarrow {120^o} + \widehat {MAC} + {30^o} = {180^o}\\ \Rightarrow \widehat {MAC} = {30^o} = \widehat C\end{array}\)

\(\Rightarrow \) Tam giác AMC cân tại M.

Vì \(\Delta BAM = \Delta CAN\)

=> BM=CN ( 2 cạnh tương ứng)

=> BM+MN=CN+NM

=> BN=CM

Xét 2 tam giác ANB và AMC có:

AB=AC (cmt)

\(AN = AM\)(do \(\Delta BAM = \Delta CAN\))

BN=MC (cmt)

=>\(\Delta ANB = \Delta AMC\)(c.c.c)

Mà tam giác AMC cân tại M.

=> Tam giác ANB cân tại N.

Cách 2: 

Xét tam giác ABC cân tại A, có \(\widehat {A{\rm{ }}} = 120^\circ \) có:

\(\widehat B = \widehat C = \frac{{{{180}^o} - {{120}^o}}}{2} = {30^o}\).

Xét tam giác ABM vuông tại A có:

\(\widehat B + \widehat {BAM} + \widehat {AMB} = {180^o}\\ \Rightarrow {30^o} + {90^o} + \widehat {AMB} = {180^o}\\ \Rightarrow \widehat {AMB} = {60^o}\)

Vì \(\Delta BAM = \Delta CAN\) nên AM = AN (2 cạnh tương ứng)

=> \(\Delta AMN\) đều (Tam giác cân có 1 góc bằng 60 độ)

=> \(\widehat {NAM}=60^0\)

Ta có: \(\widehat{BAN}+\widehat{NAM}=\widehat{BAM}\)

=> \(\widehat{BAN} + 60^0=90^0\)

=> \(\widehat{BAN}=30^0\)

Xét tam giác ABN có \(\widehat{BAN}=\widehat{ABN}(=30^0\) nên \(\Delta ABN\) cân tại N.

Ta có: \(\widehat{CAM}+\widehat{NAM}=\widehat{CAN}\)

=> \(\widehat{CAM} + 60^0=90^0\)

=> \(\widehat{CAM}=30^0\)

Xét tam giác ACM có \(\widehat{CAM}=\widehat{ACM}(=30^0\) nên \(\Delta ACM\) cân tại M.

(Trả lời bởi Kiều Sơn Tùng)
Thảo luận (1)

Bài 4.39 (SGK Kết nối tri thức với cuộc sống trang 87)

Hướng dẫn giải

a)      Xét tam giác ABC có:

\(\begin{array}{l}\widehat A + \widehat B + \widehat C = {180^o}\\ =  > {90^o} + {60^o} + \widehat C = {180^o}\\ =  > \widehat C = {30^o}\end{array}\)

Xét tam giác CAM có \(\widehat A = \widehat C = {30^o}\)

=>Tam giác CAM cân tại M.

b) Xét tam giác ABM có:

\(\begin{array}{l}\widehat C + \widehat {CMA} + \widehat {CAM} = {180^o}\\ =  > {30^o} + \widehat {CMA} + {30^o} = {180^o}\\ =  > \widehat {CMA} = {120^o}\\ =  > \widehat {BMA} = {180^o} - \widehat {CMA} = {180^o} - {120^o} = {60^o}\end{array}\)

Xét tam giác ABM có:

\(\begin{array}{l}\widehat B + \widehat {BMA} + \widehat {BAM} = {180^o}\\ =  > {60^o} + {60^o} + \widehat {BAM} = {180^o}\\ =  > \widehat {BAM} = {60^o}\end{array}\)

Do \(\widehat {BAM} = \widehat {BMA} = \widehat {ABM} = {60^o}\) nên tam giác ABM đều.

c) Vì \(\Delta ABM\) đều nên \(AB = BM = AM\)

Mà \(\Delta CAM\) cân tại M nên MA = MC

Do đó, MB = MC. Mà M nằm giữa B và C

=> M là trung điểm của BC.

(Trả lời bởi Kiều Sơn Tùng)
Thảo luận (1)