Cho đường thẳng mn cắt đường thẳng xy và uv lần lượt tại hai điểm P và Q (H.3.17).Em hãy kể tên:
a) Hai cặp góc so le trong
b) Bốn cặp góc đồng vị.
Cho đường thẳng mn cắt đường thẳng xy và uv lần lượt tại hai điểm P và Q (H.3.17).Em hãy kể tên:
a) Hai cặp góc so le trong
b) Bốn cặp góc đồng vị.
Trên Hình 3.18, cho biết hai góc so le trong A1 và B3 bằng nhau và bằng \(60^\circ \).
Thảo luận (1)Hướng dẫn giải+) Vì \(\widehat {{A_1}} + \widehat {{A_2}} = 180^\circ \) (2 góc kề bù)
\(\begin{array}{l} \Rightarrow 60^\circ + \widehat {{A_2}} = 180^\circ \\ \Rightarrow \widehat {{A_2}} = 180^\circ - 60^\circ = 120^\circ \end{array}\)
+) Vì \(\widehat {{B_3}} + \widehat {{B_4}} = 180^\circ \) (2 góc kề bù)
\(\begin{array}{l} \Rightarrow 60^\circ + \widehat {{B_4}} = 180^\circ \\ \Rightarrow \widehat {{B_4}} = 180^\circ - 60^\circ = 120^\circ \end{array}\)
Vậy hai góc so le trong còn lại A2 và B4 bằng nhau và bằng \(120^\circ \).
(Trả lời bởi Hà Quang Minh)
Trên Hình 3.18, cho biết hai góc so le trong A1 và B3 bằng nhau và bằng \(60^\circ \).
Chọn hai góc đồng vị rồi tính và so sánh hai góc đó.
Thảo luận (1)Hướng dẫn giảiChọn cặp góc đồng vị: góc A1 và góc B4
Ta có: \(\widehat {{A_1}} = 60^\circ ;\widehat {{B_3}} = 60^\circ \)
\(\widehat {{B_1}} = \widehat {{B_3}}\) (2 góc đối đỉnh)
\( \Rightarrow \widehat {{B_1}} = 60^\circ \)
(Trả lời bởi Hà Quang Minh)
a) Cho hình 3.19, biết \(\widehat {{A_2}} = 40^\circ ;\widehat {{B_4}} = 40^\circ \). Em hãy cho biết số đo các góc còn lại.
b) Các cặp góc A1 và B4; A2 và B3 được gọi là các cặp góc trong cùng phía. Tính tổng: \(\widehat {{A_1}} + \widehat {{B_4}};\widehat {{A_2}} + \widehat {{B_3}}\).
Thảo luận (1)Hướng dẫn giảia) Vì \(\widehat {{A_1}} + \widehat {{A_2}} = 180^\circ \) (2 góc kề bù)
\( \Rightarrow \widehat {{A_1}} + 40^\circ = 180^\circ \)
\( \Rightarrow \widehat {{A_1}} = 180^\circ - 40^\circ = 140^\circ \)
Ta có: \(\widehat {{A_1}} = \widehat {{A_3}}\) (2 góc đối đỉnh), mà \(\widehat {{A_1}} = 140^\circ \) nên \(\widehat {{A_3}} = 140^\circ \)
\(\widehat {{A_2}} = \widehat {{B_4}}\)(2 góc đối đỉnh), mà \(\widehat {{A_2}} = 40^\circ \) nên \(\widehat {{A_4}} = 40^\circ \)
Vì \(\widehat {{A_2}} = \widehat {{B_4}} = 40^\circ \), mà 2 góc này ở vị trí so le trong
\( \Rightarrow \) 2 góc đồng vị bằng nhau nên
\(\begin{array}{l}\widehat {{A_1}} = \widehat {{B_1}} = 140^\circ ;\widehat {{A_2}} = \widehat {{B_2}} = 40^\circ ;\\\widehat {{A_3}} = \widehat {{B_3}} = 140^\circ ;\widehat {{A_4}} = \widehat {{B_4}} = 40^\circ \end{array}\)
b) Ta có:
\(\begin{array}{l}\widehat {{A_1}} + \widehat {{B_4}} = 140^\circ + 40^\circ = 180^\circ \\\widehat {{A_2}} + \widehat {{B_3}} = 40^\circ + 140^\circ = 180^\circ \end{array}\)
(Trả lời bởi Hà Quang Minh)
1. Quan sát Hình 3.22 và giải thích vì sao AB // CD.
2. Tìm trên Hình 3.23 hai đường thẳng song song với nhau và giải thích vì sao chúng song song?
Thảo luận (1)Hướng dẫn giải1. Vì \(\widehat {BAx} = \widehat {CDA}( = 60^\circ )\)
Mà 2 góc này ở vị trí đồng vị
\( \Rightarrow \) AB//CD (Dấu hiệu nhận biết hai đường thẳng song song)
2. Ta có: \(\widehat {zKy'} + \widehat {y'Kz'} = 180^\circ \) ( 2 góc kề bù)
\(\begin{array}{l} \Rightarrow 90^\circ + \widehat {y'Kz'} = 180^\circ \\ \Rightarrow \widehat {y'Kz'} = 180^\circ - 90^\circ = 90^\circ \end{array}\)
Vì \(\widehat {yHz'} = \widehat {y'Kz'}\)
Mà 2 góc này ở vị trí đồng vị
\( \Rightarrow \) xy // x’y’ (Dấu hiệu nhận biết hai đường thẳng song song)
Chú ý:
2 đường thẳng cùng vuông góc với 1 đường thẳng thứ ba thì 2 đường thẳng đó song song.
(Trả lời bởi Hà Quang Minh)
Cho đường thẳng a và điểm A nằm ngoài đường thẳng a. Để vẽ đường thẳng b đi qua A và song song với a, ta có thể sử dụng góc nhọn \(60^\circ \) của êke để vẽ như sau:
Tại sao khi vẽ như trên ta lại khẳng định được hai đường thẳng a và b song song với nhau.
Thảo luận (1)Hướng dẫn giảiTa thấy, khi vẽ hình như trên, ta đã vẽ 2 góc A và B có số đo bằng nhau (đều bằng \(60^\circ \)).
Mà 2 góc này ở vị trí đồng vị
Vậy a//b (Dấu hiệu nhận biết 2 đường thẳng song song)
(Trả lời bởi Hà Quang Minh)
Dùng góc vuông hay góc 30\(^\circ \)của êke (thay cho góc 60\(^\circ \)) để vẽ đường thẳng đi qua và song song với đường thẳng a cho trước.
Thảo luận (1)Hướng dẫn giải+ Dùng góc vuông:
Bước 1: Vẽ đường thẳng a , điểm A nằm ngoài đường thẳng a
Bước 2: Đặt ê ke sao cho 1 cạnh của góc vuông của ê ke nằm trên đường thẳng a, 1 cạnh góc vuông còn lại đi qua điểm A, ta kẻ đường thẳng b đi qua A, vuông góc với a.
Bước 3: Kẻ đường thẳng đi qua A, vuông góc với đường thẳng b.
Ta được đường thẳng b đi qua A và song song với a.
+ Dùng góc 30\(^\circ \)của êke:
Bước 1: Vẽ đường thẳng a , điểm A nằm ngoài đường thẳng a
Bước 2: Đặt ê ke sao cho góc nhọn 30\(^\circ \) và 1 cạnh của góc vuông của ê ke nằm trên đường thẳng a, cạnh đối diện với góc vuông đi qua điểm A, ta kẻ đường thẳng c đi qua cạnh đối diện với góc vuông của ê ke.
Bước 3: Dịch chuyển ê ke theo đường thẳng c cho đến khi điểm A trùng với đỉnh của góc nhọn 30\(^\circ \).
Bước 4: Kẻ đường thẳng b đi qua A và 1 cạnh của góc 30\(^\circ \)
Ta được đường thẳng b đi qua A và song song với a.
(Trả lời bởi Hà Quang Minh)
Quan sát hình 3.24.
a) Tìm một góc ở vị trí so le trong với góc MNB.
b) Tìm một góc ở vị trí đồng vị với góc ACB.
c) Kể tên một cặp góc trong cùng phía.
d) Biết MN//BC, em hãy kể tên ba cặp góc bằng nhau trong hình vẽ
Thảo luận (1)Hướng dẫn giảia) Góc MNB so le trong với góc NBC
b) Góc ACB đồng vị với góc ANM
c) Các cặp góc trong cùng phía là: góc MNC và góc NCB; góc NMB và góc MBC
d) Vì MN//BC nên
\(\widehat {ANM} = \widehat {ACB}\) (2 góc đồng vị)
\(\widehat {AMN} = \widehat {ABC}\) (2 góc đồng vị)
\(\widehat {MNB} = \widehat {NBC}\) ( 2 góc so le trong)
(Trả lời bởi Hà Quang Minh)
Quan sát Hình 3.25. Biết \(\widehat {MEF} = 40^\circ ;\widehat {EMN} = 40^\circ \). Em hãy giải thích tại sao EF // NM.
Thảo luận (1)Hướng dẫn giảiVì \(\widehat {FEM} = \widehat {EMN}( = 40^\circ )\)
Mà 2 góc này ở vị trí so le trong
\( \Rightarrow \) EF // NM ( Dấu hiệu nhận biết hai đường thẳng song song)
(Trả lời bởi Hà Quang Minh)
Quan sát hình 3.26, giải thích vì sao AB // DC.
Thảo luận (1)Hướng dẫn giảiVì AB và DC cùng vuông góc với đường thẳng AD nên AB // DC ( Theo nhận xét trang 48)
(Trả lời bởi Hà Quang Minh)