Một hình chữ nhật có chiều dài gấp 3 lần chiều rộng. Nếu cả chiều dài và chiều rộng cùng tăng thêm $5\text{cm}$ thì được một hình chữ nhật mới có diện tích bằng $153 \text{ cm}^2$. Nếu gọi chiều rộng của hình chữ nhật là $x$ (cm) với $x > 0$ và chiều dài của hình chữ nhật là $3x$ cm. Khi đó, chiều rộng và chiều dài hình chữ nhật sau khi tăng thêm lần lượt là $x + 5$ (cm) và $3x + 5$ (cm). Phương trình của bài toán để tính chu vi hình chữ nhật ban đầu là

$(x + 5) (3x + 5) = 153$. $(x - 5) (3x + 5) = 153$. $(x + 5) (3x - 5) = 153$. $(x + 5) (3 - x).5 = 153$. Hướng dẫn giải:

Gọi chiều rộng của hình chữ nhật là $x$ (cm) với $x > 0$ và chiều dài của hình chữ nhật là $3x$ cm.
Chiều rộng và chiều dài hình chữ nhật sau khi tăng thêm lần lượt là $x + 5$ (cm) và $3x + 5$ (cm).
Vì hình chữ nhật mới có diện tích bằng $153 \text{ cm}^2$ nên ta có phương trình $(x + 5) (3x + 5) = 153$.