Bài 5. Đường trung trực của một đoạn thẳng

Hoạt động 1 (SGK Chân trời sáng tạo trang 67)

Hướng dẫn giải

Sau khi gấp A trùng với B thì điểm gấp trên cạnh AB là O

\( \Rightarrow \) AO = BO \( \Rightarrow \)O là trung điểm AB

Vì 2 mép của tờ giấy song song với nhau nên khi gấp đôi đường gấp ở giữa (xy) cũng song song với 2 cạnh của tờ giấy .

Mà 2 cạnh của tờ giấy vuông góc với AB nên xy cũng vuông góc với AB 

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Thực hành 1 (SGK Chân trời sáng tạo trang 67)

Hướng dẫn giải

Đường trung trực của AB là NN’ vì NN' vuông góc với AB tại trung điểm N của AB.

Đường trung trực của AN là MM’ vì MM' vuông góc với AN tại trung điểm M của AN.

Đường trung trực của NB là PP’ vì PP' vuông góc với NB tại trung điểm P của NB.

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Vận dụng 1 (SGK Chân trời sáng tạo trang 67)

Hướng dẫn giải

Theo giả thiết ta có P là trung điểm AC

Xét tam giác APD và tam giác CPD có :

AP = PC ( theo giả thiết )

DP cạnh chung

AD = CD ( theo giả thiết )

Suy ra t\(\Delta APD = \Delta CPD (c-c-c)\)

\( \Rightarrow \widehat {CPD} = \widehat {APD}\) (2 góc tương ứng )

Mà 2 góc ở vị trí kề bù \( \Rightarrow \widehat {CPD} = \widehat {APD} = {90^o}\)\( \Rightarrow AC \bot BD\) và P là chung điểm AC do AP = PC

\( \Rightarrow \) BD là đường trung trực của AC 

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Hoạt động 2 (SGK Chân trời sáng tạo trang 68,69)

Hướng dẫn giải

Theo giả thiết ta có O là trung điểm AB \( \Rightarrow \) AO = OB

Xét tam giác AOM và tam giác BOM có :

OM là cạnh chung

AO = OB

\(\widehat {MOA} = \widehat {MOB} = {90^o}\)(do d là trung trực AB)

(c-g-c)

\( \Rightarrow MA = MB\) (cạnh tương ứng)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Thực hành 2 (SGK Chân trời sáng tạo trang 68,69)

Hướng dẫn giải

Vì M thuộc trung trực của AB \( \Rightarrow \) MA = MB \( \Rightarrow \) 7 = x + 2 \( \Rightarrow \) x = 5

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Vận dụng 2 (SGK Chân trời sáng tạo trang 68,69)

Hướng dẫn giải

Vì 2 cung tròn cắt nhau tại M nên AM = MB = bán kính cung tròn

Chứng minh tương tự \( \Rightarrow \) AN = BN = bán kính cung tròn

\( \Rightarrow \) Vì M, N cách đều 2 đầu mút của đoạn AB nên M, N thuộc trung trực của AB

Và chỉ có 1 đường thẳng đi qua 2 điểm nên MN là trung trực của AB

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Bài 1 (SGK Chân trời sáng tạo trang 70)

Hướng dẫn giải

Gọi giao điểm của AB và xy là O

\( \Rightarrow \) O là trung điểm AB (Do xy là đường trung trực của AB)

\( \Rightarrow \) Đo khoảng cách AO và từ điểm O kẻ OB sao cho OA = OB và nằm khác phía với điểm A so với đường thẳng xy (A, B, O thẳng hàng)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Bài 2 (SGK Chân trời sáng tạo trang 70)

Hướng dẫn giải

Xét tam giác AMB và tam giác AMC có :

AM cạnh chung

MB = MC (do M là trung điểm BC)

\(\widehat {BMA} = \widehat {CMA} = {90^o}\)

\( \Rightarrow \) Tam giác AMB = tam giác AMC (c-g-c)

\( \Rightarrow \)AB = AC = 10 cm ( cạnh tương ứng bằng nhau 

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Bài 3 (SGK Chân trời sáng tạo trang 70)

Hướng dẫn giải

Xét tam giác BCD có BD = CD ( giả thiết )

\( \Rightarrow \) D thuộc trung trực BC do cách đều 2 đầu mút đoạn BC

Mà AM là trung trực của BC

\( \Rightarrow \) D thuộc đường thẳng AM

\( \Rightarrow \) A, M, D thẳng hàng

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Bài 4 (SGK Chân trời sáng tạo trang 70)

Hướng dẫn giải

Xét tam giác ABD và tam giác ACD có :

AB = AC ( giả thiết )

BD = CD ( giả thiết )

AD cạnh chung

\( \Rightarrow \Delta ABD =\Delta ACD (c-c-c)\)

\( \Rightarrow \)\(\widehat {BAD} = \widehat {CAD}\)( 2 góc tương ứng )

Xét tam giác ABM và ta giác ACM có :

AB = AC ( giả thiết )

AM cạnh chung

\(\widehat {BAD} = \widehat {CAD}\)( chứng minh trên )

\(\Delta ABM=\Delta ACM (c-g-c)\)

\(\Rightarrow MC = MB\) ( 2 cạnh tương ứng )

\( \Rightarrow \) M là trung điểm BC

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)