Bài 17: Dấu của tam thức bậc hai

Vận dụng (SGK Kết nối tri thức với cuộc sống trang 22,23)

Hướng dẫn giải

Để quả bóng ở độ cao trên 5m so với mặt đất thì:

\(\begin{array}{l}h(t) > 5\\ \Rightarrow  - 4,9{t^2} + 20t + 1 > 5\\ \Rightarrow  - 4,9{t^2} + 20t - 4 > 0\end{array}\)

Đặt \(f(t) =  - 4,9{t^2} + 20t - 4\)có \(\Delta ' = b{'^2} - ac = {10^2} - ( - 4,9).( - 4) = 80,4 > 0\)nên \(f(t)\)có 2 nghiệm: \(\begin{array}{l}{t_1} = \frac{{ - b' + \sqrt {\Delta '} }}{a} = \frac{{ - 10 + \sqrt {80,4} }}{{ - 4,9}} = \frac{{10 - \sqrt {80,4} }}{{4,9}}\\{t_2} = \frac{{ - b' - \sqrt {\Delta '} }}{a} = \frac{{ - 10 - \sqrt {80,4} }}{{ - 4,9}} = \frac{{10 + \sqrt {80,4} }}{{4,9}}\end{array}\)

Mặt khác \(a =  - 4,9 < 0\), do đó ta có bảng xét dấu sau

Do đó để \(h(t) > 5\)thì \(t \in \left( {\frac{{10 - \sqrt {80,4} }}{{4,9}};\frac{{10 + \sqrt {80,4} }}{{4,9}}} \right)\)

Vậy để quả bóng sẽ ở độ cao trên 5m so với mặt đất thì \(t \in \left( {\frac{{10 - \sqrt {80,4} }}{{4,9}};\frac{{10 + \sqrt {80,4} }}{{4,9}}} \right)\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Bài 6.15 (SGK Kết nối tri thức với cuộc sống trang 24)

Hướng dẫn giải

a) \(f(x) = 3{x^2} - 4x + 1\)có \(\Delta  = 4\)>0, \(a = 3 > 0\)và có hai nghiệm phân biệt \({x_1} = 1;{x_2} = \frac{1}{3}\). Do đó ta có bảng xét dấu \(f(x)\):

Suy ra \(f(x) > 0\)với mọi \(x \in \left( { - \infty ;\frac{1}{3}} \right) \cup \left( {1; + \infty } \right)\) và \(f(x) < 0\)với mọi \(x \in \left( {\frac{1}{3};1} \right)\)

 

b) \(g(x) = {x^2} + 2x + 1\) có \(\Delta  = 0\) và a=1>0 nên \(g(x)\)có nghiệm kép \(x =  - 1\) và \(g(x) > 0\)với \(x \ne  - 1\)

c) \(h(x) =  - {x^2} + 3x - 2\) có \(\Delta  = 1 > 0\), \(a =  - 1\)

Suy ra \(h(x) > 0\) với mọi \(x \in (1;2)\)và \(h(x) < 0\)với mọi \(x \in ( - \infty ;1) \cup (2; + \infty )\)

d) \(k(x) =  - {x^2} + x - 1\) có \(\Delta  =  - 3\), a=-1

Suy ra \( k(x) >0 \)với mọi \(x \in \mathbb{R}\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Hoạt động 4 (SGK Kết nối tri thức với cuộc sống trang 19-22)

Luyện tập 3 (SGK Kết nối tri thức với cuộc sống trang 22,23)

Hướng dẫn giải

a) Tam thức \(f(x) =  - 5{x^2} + x - 1\) có \(\Delta  =  - 19 < 0\), hệ số \(a =  - 5 < 0\) nên f(x) luôn âm (cùng dấu với a) với mọi x, tức là \(\)\( - 5{x^2} + x - 1 < 0\) với mọi \(x \in \mathbb{R}\). Suy ra bất phương trình có vô số nghiệm

b) Tam thức \(g(x) = {x^2} - 8x + 16\) có \(\Delta  = 0\), hệ số a=1>0 nên g(x) luôn dương (cùng dấu với a) với mọi \(x \ne 4\), tức là \({x^2} - 8x + 16 > 0\) với mọi \(x \ne 4\)

Suy ra bất phương trình có nghiệm duy nhất là x = 4

c) Tam thức \(h(x) = {x^2} - x + 6\) có \(\Delta  =  - 23 < 0\), hệ số a=1>0 nên h(x) luôn dương (cùng dấu với a) với mọi x, tức là \({x^2} - x + 6 > 0\) với mọi \(x \in \mathbb{R}\). Suy ra bất phương trình có vô số nghiệm.

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Luyện tập 2 (SGK Kết nối tri thức với cuộc sống trang 19-22)

Hướng dẫn giải

a) \(f(x) =  - 3{x^2} + x - \sqrt 2 \)có \(\Delta  = 1 - 12\sqrt 2  < 0\)và a=-3<0 nên \(f(x) < 0\)với mọi \(x \in \mathbb{R}\)

b) \(g(x) = {x^2} + 8x + 16\) có \(\Delta  = 0\)và a=1>0 nên g(x) có nghiệm kép \(x =  - 4\) và g(x) >0 với mọi \(x \ne  - 4\)

c) \(h(x) =  - 2{x^2} + 7x - 3\) có \(\Delta  = 25\)>0 và a=-2<0 và có 2 nghiệm phân biệt \({x_1} = \frac{1}{2};{x_2} = 3\)

Do đó ta có bảng xét dấu h(x)

Suy ra h(x) <0 với mọi \(x \in \left( { - \infty ;\frac{1}{2}} \right) \cup \left( {3; + \infty } \right)\) và h(x)>0 với mọi \(x \in \left( {\frac{1}{2};3} \right)\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Hoạt động 3 (SGK Kết nối tri thức với cuộc sống trang 19-22)

Hướng dẫn giải

Ta có: hệ số a=-2<0

a) Nhìn vào đồ thị ta thấy

- Trên khoảng \(\left( { - \infty ; - 1} \right)\) đồ thị nằm phía dưới trục hoành

- Trên khoảng \(\left( { - 1;\frac{3}{2}} \right)\), đồ thị nằm phía trên trục hoành

- Trên khoảng \(\left( {\frac{3}{2}; + \infty } \right)\), đồ thị nằm phía dưới trục hoành

c) - Trên khoảng \(\left( { - \infty ; - 1} \right)\) đồ thị nằm phía dưới trục hoành => f(x)<0, cùng dầu với hệ số a

- Trên khoảng \(\left( { - 1;\frac{3}{2}} \right)\), đồ thị nằm phía trên trục hoành => f(x) >0, khác dấu với hệ số a

- Trên khoảng \(\left( {\frac{3}{2}; + \infty } \right)\), đồ thị nằm phía dưới trục hoành => f(x)<0, cùng dấu với hệ số a.

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Luyện tập 1 (SGK Kết nối tri thức với cuộc sống trang 19-22)

Hướng dẫn giải

Biểu thức \(C =  - \frac{2}{3}{x^2} + 7x - 4\) là tam thức bậc hai

Biểu thức A không là tam thức bậc hai vì chứa \(\sqrt x \)

Biểu thức B không là tam thức bậc hai vì chứa \({x^4}\)

Biểu thức D không là tam thức bậc hai vì chứa \({\left( {\frac{1}{x}} \right)^2}\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Hoạt động 1 (SGK Kết nối tri thức với cuộc sống trang 19-22)

Hướng dẫn giải

Ta có :

\(A = 0,5{x^2}\)

\(B = 1 - {x^2}\)

\(C = {x^2} + x + 1\)

\(D = (1 - x)(2x + 1) = 2x + 1 - 2{x^2} - x =  - 2{x^2} + x + 1\)

=> Các biểu thức đều có dạng \(a{x^2} + bx + c(a \ne 0)\), a, b, c là các số thực.

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Hoạt động 2 (SGK Kết nối tri thức với cuộc sống trang 19-22)

Hướng dẫn giải

a) Hệ số a là: a=1

\(f(0) = {0^2} - 4.0 + 3 = 3\)

\(f(1) = {1^2} - 4.1 + 3 = 0\)

\(f(2) = {2^2} - 4.2 + 3 =  - 1\)

\(f(3) = {3^2} - 4.3 + 3 = 0\)

\(f(4) = {4^2} - 4.4 + 3 = 3\)

=> f(0); f(4) cùng dấu với hệ số a; f(2) khác dấu với hệ số a

b) Nhìn vào đồ thị ta thấy

- Trên khoảng \(\left( { - \infty ;1} \right)\) đồ thị nằm phía trên trục hoành

- Trên khoảng \(\left( {1;3} \right)\), đồ thị nằm phía dưới trục hoành

- Trên khoảng \(\left( {3; + \infty } \right)\), đồ thị nằm phía trên trục hoành

c) - Trên khoảng \(\left( { - \infty ;1} \right)\) đồ thị nằm phía trên trục hoành => f(x)>0, cùng dầu với hệ số a

- Trên khoảng \(\left( {1;3} \right)\), đồ thị nằm phía dưới trục hoành => f(x) <0, khác dấu với hệ số a

- Trên khoảng \(\left( {3; + \infty } \right)\), đồ thị nằm phía trên trục hoành => f(x)>0, cùng dấu với hệ số a

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Hoạt động 5 (SGK Kết nối tri thức với cuộc sống trang 22,23)

Hướng dẫn giải

Để diện tích của mảnh vườn không nhỏ hơn 48 \({m^2}\)thì

\(S(x) \ge 48 \Rightarrow  - 2{x^2} + 20x \ge 48 \Leftrightarrow  - 2{x^2} + 20x - 48 \ge 0\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)