5+\(\frac{96}{x^2-16}\)=\(\frac{2x-1}{x+4}\)-\(\frac{3x-1}{4-x}\)
giải pt: a. (x - 2)(x+1)(x+3) = (x+3)(x+1)(2x-5)
b. \(5+\frac{96}{x^2-16}=\frac{2x-1}{x+4}+\frac{3x-1}{x-4}\)
a.\(\Leftrightarrow\left(x+3\right)\left(x^2-x-2-2x^2+3x+5\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(-x^2+2x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=3\\x=-1\end{matrix}\right.\)
(x-2)(x+1)(x+3)=(x+3)(x+1)(2x-58)
\(x^3+2x^2-5x-6\)=\(2x^3+3x^2-14x-15\)
\(-x^3-x^2+9x+9=0\)
\(-x^2\left(x+1\right)+9\left(x+1\right)=0\)
\(\left(x+1\right)\left(9-x^2\right)\)=0
(x+1)(3-x)(3+x)=0
*x+1=0 =>x=-1
*3-x=0=>x=3
*3+x=0=>x=-3
5+\(\frac{96}{x^2-16}\)=\(\frac{2x-1}{x+4}\)-\(\frac{3x-1}{4-x}\)
thực hiện phép tính sau:
a)\(\frac{x}{2\left(x-3\right)}+\frac{x}{2\left(x+1\right)}=\frac{2x}{\left(x+1\right)\left(x-3\right)}\)
b)\(5+\frac{96}{x^2-16}=\frac{2x-1}{x+4}-\frac{3x-1}{4-x}\)
\(a,\frac{x}{2\left(x-3\right)}+\frac{x}{2\left(x+1\right)}=\frac{2x}{\left(x+1\right)\left(x-3\right)}\)
\(\frac{x\left(x+1\right)}{2\left(x-3\right)\left(x+1\right)}+\frac{x\left(x-3\right)}{2\left(x+1\right)\left(x-3\right)}=\frac{4x}{2\left(x+1\right)\left(x-3\right)}\)
\(x\left(x+1\right)+x\left(x-3\right)=4x\)
\(x^2+x+x^2-3x=4x\)
\(2x^2-2x=4x\)
\(2x^2-2x-4x=0\)
\(2x\left(x-3\right)=0\)
\(2x=0\Leftrightarrow x=0\)
hoặc
\(x-3=0\Leftrightarrow x=3\)
b) \(ĐKXĐ:x\ne\pm4\)
\(5+\frac{96}{x^2-16}=\frac{2x-1}{x+4}-\frac{3x-1}{4-x}\)
\(\Leftrightarrow5+\frac{96}{x^2-16}=\frac{2x-1}{x+4}+\frac{3x-1}{x-4}\)
\(\Leftrightarrow\frac{5\left(x^2-16\right)}{x^2-16}+\frac{96}{x^2-16}=\frac{\left(2x-1\right)\left(x-4\right)}{x^2-16}+\frac{\left(3x-1\right)\left(x+4\right)}{x^2-16}\)
\(\Rightarrow5\left(x^2-16\right)+96=\left(2x-1\right)\left(x-4\right)+\left(3x-1\right)\left(x+4\right)\)
\(\Leftrightarrow5x^2-80+96=2x^2-9x+4+3x^2+11x-4\)
\(\Leftrightarrow5x^2-2x^2-3x^2+9x-11x=4-4+80-96\)
\(\Leftrightarrow-2x=-16\)\(\Leftrightarrow x=8\)( thoả mãn ĐKXĐ )
Vậy tập nghiệm của phương trình là: \(S=\left\{8\right\}\)
Bài 1: Giải các phương trình
a, 5+\(\frac{96}{x^2-16}\)= \(\frac{2x-1}{x+4}\)- \(\frac{3x-1}{4-x}\)
b, \(\frac{3x+2}{3x-2}\) - \(\frac{6}{2+3x}\)= \(\frac{9x^2}{9x^2-4}\)
c, \(\frac{x+1}{x^2+x+1}\) - \(\frac{x-1}{x^2-x+1}\)= \(\frac{3}{x\left(x^4+x^2+1\right)}\)
d, \(\frac{2x-5}{x-2}\) - \(\frac{3x-5}{x-1}\)= -1
Bài 1: Giải các phương trình sau
a, 5+\(\frac{96}{x^2-16}\)= \(\frac{2x-1}{x+4}\)- \(\frac{3x-1}{4-x}\)
b, \(\frac{3x+2}{3x-2}\)- \(\frac{6}{2+3x}\)= \(\frac{9x^2}{9x^2-4}\)
c, \(\frac{x+1}{x^2+x+1}\)- \(\frac{x-1}{x^2-x+1}\)= \(\frac{3}{x\left(x^4+x^2+1\right)}\)
Bài 2: Tìm giá trị nhỏ nhất của biểu thức A= \(x^2\)+2x+2012
Bài 2:
\(A=x^2+2x+2012\)
\(=\left(x^2+2x+1\right)+2011\)
\(=\left(x+1\right)^2+2011\)
Ta có: \(\left(x+1\right)^2\ge0,\forall x\)
\(\Rightarrow\left(x+1\right)^2+2011\ge2011,\forall x\)
Hay \(A\ge2011,\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x+1\right)^2=0\)
\(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
Vậy Min A=2011 tại x=-1
làm chuẩn đấy
what happend
\(a,\left(x-1\right)^2-1+x=\left(1-x\right)\left(x+3\right)\)
\(b,\frac{3\left(x+3\right)}{4}+\frac{1}{2}=\frac{5x+9}{3}-\frac{7x-9}{4}\)
\(c,\frac{1}{x+2}+3=\frac{3-x}{x-2}\)
\(d,\frac{2x-1}{x+4}-\frac{3x-1}{4-x}=5+\frac{96}{x^2-16}\)
Các bạn giúp mình với. Mình cảm ơn rất nhiều.
3) \(\frac{1-x}{x+1}-\frac{3+2x}{x+1}=0\)
13) \(\frac{x+2}{x}-\frac{x^2+5x+4}{x\left(x+2\right)}=\frac{x}{x+2}\)
14) \(\frac{1}{x+1}-\frac{5}{x-2}=\frac{20}{\left(x+1\right)\left(2-x\right)}\)
16) \(\frac{x+5}{x-5}-\frac{x-5}{x+5}=\frac{20}{x^2-25}\)
17) \(\frac{3x+2}{3x-2}-\frac{6}{2+3x}=\frac{9x^2}{9x^2-4}\)
18) \(\frac{x-1}{x}+\frac{1}{x+1}=\frac{2x-1}{2x^2+2}\)
19) \(\frac{2}{x+1}-\frac{3x+1}{\left(x+1\right)}=\frac{1}{\left(x+1\right)\left(x-2\right)}\)
20) \(\frac{x+5}{3x-6}-\frac{1}{2}=\frac{2x-3}{2x-4}\)
Bài 1:Giải phương trình:
a, (3x-2)(4+5x) = 0
b, \(\frac{3x-2}{5}\) - 2x+3 = \(\frac{2x-1}{2}\) - \(\frac{x-3}{10}\)
c, \(\frac{2}{x+1}\) - \(\frac{1}{x-2}\) = \(\frac{3x+5}{\left(x+1\right)\left(x-2\right)}\)
Bài 2: Giải các phương trình sau
a, 5 +\(\frac{96}{x^2-16}\) = \(\frac{2x-1}{x+4}\) - \(\frac{3x-1}{4-x}\)
b, \(\frac{3x+2}{3x-2}\) - \(\frac{6}{2+3x}\) = \(\frac{9x^3}{9x^2-4}\)
c, \(\frac{x+1}{x^2+x+1}\) - \(\frac{x-1}{x^2-x+1}\) = \(\frac{3}{x\left(x^4+x^2+1\right)}\)
Bài 3:Tìm giá trị nhỏ nhất của biểu thức A = \(^{x^2}\)+2x+2012
giải các phương trình chứa ẩn ở mẫu sau đây dạng \(\frac{p\left(x\right)}{f\left(x\right)}+\frac{q\left(x\right)}{g\left(x\right)}+\frac{r\left(x\right)}{f\left(x\right).g\left(x\right)}=a\)
a) \(\frac{x+5}{x-1}=\frac{x+1}{x-3}-\frac{8}{x^2-4x+3}\)
b) \(\frac{x+1}{x^2-1}+\frac{2}{x^2+x+1}=\frac{3x^2}{x^3-1}\)
c) \(5+\frac{96}{x^2-16}=\frac{2x-1}{x+4}-\frac{3x-1}{4-x}\)
a/ ĐKXĐ: \(x\ne\left\{1;3\right\}\)
\(\Leftrightarrow\frac{x+5}{x-1}=\frac{x+1}{x-3}-\frac{8}{\left(x-1\right)\left(x-3\right)}\)
\(\Leftrightarrow\left(x+5\right)\left(x-3\right)=\left(x+1\right)\left(x-1\right)-8\)
\(\Leftrightarrow x^2+2x-15=x^2-9\)
\(\Leftrightarrow2x=6\Rightarrow x=3\) (ktm)
Vậy pt vô nghiệm
b/ ĐKXĐ: \(x\ne1\)
\(\Leftrightarrow\frac{x+1}{\left(x-1\right)\left(x+1\right)}+\frac{2}{x^2+x+1}=\frac{3x^2}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\Leftrightarrow x^2+x+1+2\left(x-1\right)=3x^2\)
\(\Leftrightarrow2x^2-3x+1=0\Rightarrow\left[{}\begin{matrix}x=1\left(ktm\right)\\x=\frac{1}{2}\end{matrix}\right.\)
c/ ĐKXĐ: \(x\ne\pm4\)
\(\Leftrightarrow\frac{5\left(x^2-16\right)}{\left(x-4\right)\left(x+4\right)}+\frac{96}{\left(x-4\right)\left(x+4\right)}=\frac{2x-1}{x+4}+\frac{3x-1}{x-4}\)
\(\Leftrightarrow5x^2-80+96=\left(2x-1\right)\left(x-4\right)+\left(3x-1\right)\left(x+4\right)\)
\(\Leftrightarrow5x^2+16=5x^2+2x\)
\(\Rightarrow x=8\)