chứng minh rằng nếu x- 1/x là số nguyên và x khác 1 và -1 thì x và x + 1/x là số vô tỉ . Khi đó (x + 1/x)^2n và (x + 1/x)^2n+1 là số hữu tỉ hay số vô tỉ ?
chứng minh nếu \(x-\frac{1}{x}\) là số nguyên và x khác +-1 thì x và \(x+\frac{1}{x}\) là số vô tỉ . khi đó \(\left(x+\frac{1}{x}\right)^{2n}\)
và \(\left(x+\frac{1}{x}\right)^{2n+1}\) là số vô tỉ hay số hữu tỉ
Giả sử x là số hữu tỷ thì ta có
\(x=\frac{m}{n}\left(\left(m,n\right)=1\right)\)
\(\Rightarrow x-\frac{1}{x}=\frac{m}{n}-\frac{n}{m}=\frac{m^2-n^2}{mn}\)
Vì \(x-\frac{1}{x}\)là số nguyên nên m2 - n2 \(⋮\)m
\(\Rightarrow\)n2 \(⋮\)m
Mà n,m nguyên tố cùng nhau nên
m = \(\pm\)1
Tương tự ta cũng có
n =\(\pm\)1
\(\Rightarrow\)x = \(\pm\)1
Trái giả thuyết.
Vậy x phải là số vô tỷ.
Ta có: \(2x-\left(x-\frac{1}{x}\right)=x+\frac{1}{x}\)
\(\Rightarrow x+\frac{1}{x}\)là số vô tỷ.
Ta có: \(\left(x+\frac{1}{x}\right)^2=\left(x-\frac{1}{x}\right)^2+4\)nên là số nguyên
\(\Rightarrow\left(x+\frac{1}{x}\right)^{2n}\)là số hữu tỷ.
Mà \(x+\frac{1}{x}\)là số vô tỷ nên
\(\left(x+\frac{1}{x}\right)^{2n+1}=\left(x+\frac{1}{x}\right)\left(x+\frac{1}{x}\right)^{2n}\)
là số vô tỷ
a, Hãy chỉ ra một số thực \(x\) mà \(x-\frac{1}{x}\)là số nguyên\(\left(x\ne1,-1\right)\)
b, Chứng minh rằng nếu \(x-\frac{1}{x}\)là số nguyên và \(x\ne1,-1\)thì \(x\)và\(x+\frac{1}{x}\)là số vô tỉ. Khi đó \(\left(x+\frac{1}{x}\right)^{2n}\)và \(\left(x+\frac{1}{x}\right)^{2n+1}\)là số hửu tỉ hay số vô tỉ ?
a/ \(x=\sqrt{2}-1\)
b/ Giả sử x là số vô tỷ
\(x=\frac{m}{n}\left[\left(m,n\right)=1\right]\)
\(\Rightarrow x-\frac{1}{x}=\frac{m}{n}-\frac{n}{m}=\frac{m^2-n^2}{mn}\)
Vì \(x-\frac{1}{x}\)là số nguyên \(\Rightarrow m^2-n^2⋮m\)
\(\Rightarrow n^2⋮m\)
Mà m, n nguyên tố cùng nhau nên
\(\Rightarrow n=1;-1\)
Tương tự ta cũng có: \(m=1;-1\)
\(\Rightarrow x=1;-1\) trái giả thuyết
\(\Rightarrow x\)là số vô tỷ
Ta có:
\(2x-\left(x-\frac{1}{x}\right)=x+\frac{1}{x}\)
\(\Rightarrow x+\frac{1}{x}\)là số vô tỷ
Ta có:
\(\left(x+\frac{1}{x}\right)^2=\left(x-\frac{1}{x}\right)^2+4\) là số nguyên
\(\Rightarrow\left(x+\frac{1}{x}\right)^{2n}\) là số hữu tỉ và \(\left(x+\frac{1}{x}\right)^{2n+1}=\left(x+\frac{1}{x}\right)\left(x+\frac{1}{x}\right)^{2n}\)là số vô tỉ.
cho x là 1 số hữu tỉ khác 0 , y là 1 số vô tỉ . CMR : x+y và x*y là những số vô tỉ
x là 1 số khác 0 y là số vô tỉ chứng minh x+y và xy là những số vô tỉ
Chứng minh x + y và xy là những số vô tỉ (Trang 1/1) - Máy tính bỏ túi VN vào đó mak xe,
cho x là một số hữu tỉ khác 0, y là một số vô tỉ. Chứng tỏ rằng x+ y và x .y là những số vô tỉ.
Giả sử x + y = z là một số hữu tỉ.
Suy ra y = z –x ta có z hữu tỉ, x hữu tỉ thì z – x là một số hữu tỉ
Hay y ∈ Q trái giả thiết y là số vô tỉ
Vậy x + y là số vô tỉ
Giả sử z = x.y là một số hữu tỉ
Suy ra y = z : x mà x ∈ Q, z ∈ Q
Suy ra y ∈ Q trái giả thiết y là số vô tỉ
Vậy xy là số vô tỉ
Cho x là số hữu tỉ khác 0, y là một số vô tỉ. Chứng tỏ rằng : x + y và x.y là những số vô tỉ.
Giả sử x + y = z là một số hữu tỉ.
Suy ra y = z –x ta có z hữu tỉ, x hữu tỉ thì z – x là một số hữu tỉ
Hay y ∈ Q trái giả thiết y là số vô tỉ
Vậy x + y là số vô tỉ
Giả sử z = x.y là một số hữu tỉ
Suy ra y = z : x mà x ∈ Q, z ∈ Q
Suy ra y ∈ Q trái giả thiết y là số vô tỉ
Vậy xy là số vô tỉ
cho x là số hữu tỉ khác 0 và y là số vô tỉ. chứng minh x+y ; x-y;xy;x/y đều là số hữu tỉ
trong vở bài tập toán lớp 7 tập 1 xoắn 11 bài 115 có bài tương tự đó bạn
Cho x là số hữu tỉ khác 0 và y là số vô tỉ. Chứng minh:
a) x+y là số vô tỉ
b) xy là số vô tỉ?
a) Giả sử x + y là số hữu tỉ => x + y = a (a \(\in\) Q)
=> y = a - x, là số hữu tỉ, trái với đề bài
=> điều giả sử là sai
=> x + y là số vô tỉ (đpcm)
lm tương tự vs câu b
a) Có x thuộc Q; y thuộc I
Giả sử x + y = a thuộc Q
=> y = a - x thuộc Q (vì x thuộc Q)
Điều này trái với giả thiết y thuộc I
=> Điều giả sử là sai
=> x + y là số vô tỉ
Vậy x thuộc Q; y thuộc I thì x + y là số vô tỉ.
b) Có x thuộc Q; y thuộc I
Giả sử x - y = a thuộc Q
=> y = x - a thuộc Q (vì x thuộc Q)
Điều này trái với giả thiết y thuộc I
=> Điều giả sử là sai
=> x - y là số vô tỉ
Vậy x thuộc Q; y thuộc I thì x - y là số vô tỉ.
Hãy cho biết x và y là số vô tỉ hay là số hữu tỉ nếu biết:
a) x+y và x-y đều là số hữu tỉ
b) x+y và x/y đều là số hữu tỉ