Chứng minh PT sau vô nghiệm:
\(\frac{x^2+2+\sqrt{x^2+1}}{\sqrt{x^2+1}+1}+3x^2-4x=0\)
1)Giải PT: \(\sqrt{x^2+2x}+\sqrt{2x-1}=\sqrt{3x^2+4x+1}\)
2)Cho PT: \(x^2-mx+m-1=0\)
a) Giải PT khi m= 1
b) Chứng minh PT có 2 nghiệm x1 , x2
c) Tính GTLN của A=\(\frac{2x_1x_2+3}{x_1^2+x_2^2+2\left(1+x_1_1x_2\right)}\)
2.
a, Với m\(=1\Rightarrow x^2-x=0\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
b. Ta có \(\Delta=b^2-4ac=\left(-m\right)^2-4\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2\ge0\)
\(\Rightarrow\)phương trình luôn có 2 nghiệm \(x_1,x_2\)
c, Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=m\\x_1.x_2=m-1\end{cases}}\)
A=\(\frac{2.x_1x_2+3}{x_1^2+x_2^2+2\left(1+x_1x_2\right)}=\frac{2.x_1x_2+3}{\left(x_1+x_2\right)^2-2x_1x_2+2+2x_1x_2}\)
\(=\frac{2x_1x_2+3}{\left(x_1+x_2\right)^2+2}=\frac{2m+1}{m^2+2}=\frac{\left(m^2+2\right)-\left(m^2-2m+1\right)}{m^2+2}\)
\(=1+\frac{-\left(m-1\right)^2}{m^2+2}\)
Ta thấy \(\frac{-\left(m-1\right)^2}{m^2+2}\le0\Rightarrow1+\frac{-\left(m-1\right)^2}{m^2+2}\le1\)
\(\Rightarrow MaxA=1\)
Dấu bằng xảy ra\(\Leftrightarrow\) \(m-1=0\Leftrightarrow m=1\)
chứng minh vô nghiệm
\(\dfrac{x^2+2+\sqrt{x^2+1}}{\sqrt{x^2+1}+1}+3x^2-4x=0\)
+xét \(\sqrt{x^2+1}-1=0\Leftrightarrow x=0\)
thử lại ta thấy x=0 ko là n0 pt
+xét \(\sqrt{x^2+1}-1\ne0\Leftrightarrow x\ne0\)
\(\Leftrightarrow\dfrac{\left(\sqrt{x^2+1}\right)^3-1}{x^2}+3x^2-4x=0\)
\(\Leftrightarrow\left(\sqrt{x^2+1}\right)^3-1+3x^4-4x^3=0\)
Đặt \(A=\left(\sqrt{x^2+1}\right)^3-1+3x^4-4x^3\)
Ta sẽ chứng minh A > 0 với mọi x thuộc R (x khác 0)
+ \(\left(\sqrt{x^2+1}\right)^3-1>0\forall x\in R\left(x\ne0\right)\)
+ \(3x^4-4x^3\) (cái này tui ko biết làm)
\(3x^2-4x+m\)
đa thức này lớn sẽ vô nghiệm khi m>4/3
khi đó gái trị của đa thức cùng dấu với a nghĩ là >0
lấy m=2 (thỏa m>4/3)
phần còn lại của
phương trình đầu là
\(\dfrac{x^2+2+\sqrt{x^2+1}}{\sqrt{x^2+1}+1}-2\)
phần còn lại này luôn >=0 vì giái trị nhỏ nhất sẽ có khi x=0,
(> hoặc =0)+(>0)=> lớn hơn 0
=> pt vn
giaỉ các phương trình vô tỉ sau
\(x^2-3x+1+\frac{\sqrt{3}}{3}.\sqrt{x^4+x^2+1}=0\)
\(\sqrt[3]{4+4x-x^2}+x\sqrt{x\left(6-x^2\right)}+3x=12+\sqrt{2-x}\)
1) tìm m để pt sau có 2 nghiệm \(x+\sqrt{x+\frac{1}{2}+\sqrt{x+\frac{1}{4}}}=m\)
2) tìm m để pt sau có 1 nghiệm
a) \(\sqrt{x+1}-m\sqrt{x-1}+2\sqrt[4]{x^2-1}=0\)
b) \(\sqrt{\frac{x-1}{x+2}}-m\sqrt{\frac{x+2}{x-1}}+2=0\)
1/ \(x+\sqrt{x+\frac{1}{2}+\sqrt{x+\frac{1}{4}}}=x+\sqrt{\left(x+\frac{1}{4}\right)+\sqrt{x+\frac{1}{4}}+\frac{1}{4}}\)
\(=x+\sqrt{\left(\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right)^2}=x+\left|\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right|=\left(x+\frac{1}{4}\right)+\sqrt{x+\frac{1}{4}}+\frac{1}{4}\)
\(=\left(\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right)^2\)
\(\Rightarrow m=\left(\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right)^2\)
Để pt trên có nghiệm thì \(\hept{\begin{cases}m>0\\\sqrt{m}-\frac{1}{2}\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}m>0\\m\ge\frac{1}{4}\end{cases}}\Leftrightarrow m\ge\frac{1}{4}\)
Vậy với \(m\ge\frac{1}{4}\) thì pt trên có nghiệm.
Phương trình trên chỉ có một nghiệm thôi nhé, đó là \(x=m-\sqrt{m}\) với \(m\ge\frac{1}{4}\)
cậu lm đc bài 2 câu a ko.. mk còn mỗi câu đấy
chứng minh \(\frac{\left(4x-1\right)\left(3x+4\right)}{\sqrt{x^2+1}+15}-x+1\) vô nghiệm ( x > \(\frac{1}{4}\) )
hộ e vs ak
Giải các pt vô tỉ sau ( bằng phương pháp đặt ẩn phụ đưa về phương trình tích )
a) \(\sqrt{x^3+x^2+3x+3}+\sqrt{2x}=\sqrt{x^2+3}+\sqrt{2x^2+2x}\)
b) \(\sqrt{x^2-3x}+2\sqrt{x}-4\sqrt{x-3}-x+8=0\)
c) \(\left(5x^2+4x+3\right)\sqrt{x}=\left(x+3\right)\sqrt{5x^2+4x}\)
d) \(\left(x+2\right)\sqrt{3x+\frac{1}{x}}=3x^2+3\)
e)\(\left(x^2+2x+1\right)3\sqrt{x^2+\frac{3}{x}}=x^3+2x^2+5\)
\(\text{Chứng minh phương trình sau vô nghiệm với }x\ne0\)
\(\frac{9x^2}{\sqrt[3]{\left(3x+2\right)^2}+2\sqrt[3]{3x+2}+4}+x^2+8x+4=0\)
Chứng minh pt sau vô nghiệm :\(\frac{1}{\sqrt{3x-2}+\sqrt{x+1}}=x+1\)
giúp tớ gấp nha. Cảm ơn nhiều nhiều
Giúp e giải pt:
2x-3+\(\frac{3x-1}{\sqrt{3-2x^2}+2-x}=0\)
\(^{x^2+4x+1=\left(x+4\right)\sqrt{x^2+1}}\)
\(2\left(x-2\right)\sqrt{x-1}=3x^2+5x-4-4x\sqrt{2x-1}\)