giải pt :
a, 2x-5/x+5 = 3
b, 5/3x+2=2x-1
giúp chi iết vs
ai có thể giúp mình giải bài này vs đc không mình đang cần rất gấp (làm chi tiết hộ mình nhé, xin cảm ơn)
Bài 4:
a, √3x+4−√2x+1=√x+33x+4−2x+1=x+3
b, √2x−5+√x+2=√2x+12x−5+x+2=2x+1
c, √x+4−√1−x=√1−2xx+4−1−x=1−2x
d,√x+9=5−√2x+4x+9=5−2x+4
Bài 5:
a, √x+4√x+4=5x+2x+4x+4=5x+2
b, √x2−2x+1+√x2+4x+4=4x2−2x+1+x2+4x+4=4
c, √x+2√x−1+√x−2√x−1=2x+2x−1+x−2x−1=2
d,√x−2+√2x−5+√x+2+3√2x−5=7√2x−2+2x−5+x+2+32x−5=72
Ví Dụ 1:
a, √2x−1=√2−12x−1=2−1
b, √x+5=3−√2x+5=3−2
c, √3x2−√12=03x2−12=0
d, √2(x−1)−√50=02(x−1)−50=0
Thu gọn
ai có thể giúp mình giải bài này vs đc không mình đang cần rất gấp (làm chi tiết hộ mình nhé, xin cảm ơn)
Bài 4:
a, √3x+4−√2x+1=√x+33x+4−2x+1=x+3
b, √2x−5+√x+2=√2x+12x−5+x+2=2x+1
c, √x+4−√1−x=√1−2xx+4−1−x=1−2x
d,√x+9=5−√2x+4x+9=5−2x+4
Bài 5:
a, √x+4√x+4=5x+2x+4x+4=5x+2
b, √x2−2x+1+√x2+4x+4=4x2−2x+1+x2+4x+4=4
c, √x+2√x−1+√x−2√x−1=2x+2x−1+x−2x−1=2
d,√x−2+√2x−5+√x+2+3√2x−5=7√2x−2+2x−5+x+2+32x−5=72
Ví Dụ 1:
a, √2x−1=√2−12x−1=2−1
b, √x+5=3−√2x+5=3−2
c, √3x2−√12=03x2−12=0
d, √2(x−1)−√50=02(x−1)−50=0
Bạn gõ bằng công thức trực quan để được giúp đỡ nhanh hơn nhé, chứ mình nhìn thế không dịch được (Nhấp vào biểu tượng chữ M nằm ngang)
tính giá trị của biểu thức :
A=3x^2+2x-1 tại trị tuyệt đối của x = 1phần 3
B=2x^+5x+4 phần x^2 -4x+3 vói x=-1
giúp mình vs ạ
b) Thay x=-1 vào biểu thức \(B=\dfrac{2x^2+5x+4}{x^2-4x+3}\), ta được:
\(B=\dfrac{2\cdot\left(-1\right)^2+5\cdot\left(-1\right)+4}{\left(-1\right)^2-4\cdot\left(-1\right)+3}=\dfrac{2\cdot1-5+4}{1+4+3}=\dfrac{1}{8}\)
Vậy: Khi x=-1 thì \(B=\dfrac{1}{8}\)
Ta có:
|x| = \(\dfrac{1}{3}\)
\(\Rightarrow x=\dfrac{1}{3};x=-\dfrac{1}{3}\)
(1) giải pt và hpt:
a) \(\sqrt{x^2+2x+4}=2\)
b) \(\left\{{}\begin{matrix}x+2y-1=0\\2x+y=5\end{matrix}\right.\)
(2) xác định a để đồ thị hàm số \(y=2ax+a+1\) cắt đường thẳng \(y=x+2\) tại điểm có tung độ =1
giúp mk vs ạ mk cần gấp
(1)-a)Với mọi x, ta luôn có: \(\left(x+1\right)^2+3>0\Leftrightarrow x^2+1+2x+3>0\Leftrightarrow x^2+2x+4>0\)
\(\sqrt{x^2+2x+4}=2\Leftrightarrow x^2+2x+4=2^2=4\)
\(\Leftrightarrow x^2+2x=0\\\Leftrightarrow\left(x+2\right)x=0\\\Leftrightarrow\left[{}\begin{matrix}x+2=0\Leftrightarrow x=-2\\x=0\end{matrix}\right. \)
➤\(x\in\left\{-2;0\right\}\)
b) \(\left\{{}\begin{matrix}x+2y-1=0\\2x+y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+2y=1\\4x+2y=10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2y=1-x\\3x=9\Leftrightarrow x=\dfrac{9}{3}=3\end{matrix}\right.\)
Do \(x=3\Leftrightarrow1-x=1-3=-2\) nên ta có: \(2y=1-x=-2\Leftrightarrow y=\dfrac{-2}{2}=-1\)
➤\(\left\{{}\begin{matrix}x=3\\y=-1\end{matrix}\right.\)
(2): +)ĐK để 2 hàm số cắt nhau là: \(2a\ne1\Leftrightarrow a\ne\dfrac{1}{2}\Leftrightarrow a\ne0,5\)
Ta có hệ phương trình sau: \(\left\{{}\begin{matrix}y=2ax+a+1\\y=x+2\end{matrix}\right.\)
➢Do đó, ta có: \(2ax+a+1=x+2\Leftrightarrow2ax+a-x=2-1=1\)
Bài 3: Giải các phương trình sau bằng cách đưa về dạng ax +b =0 ( giải chi tiết )
a)7 – x = -2x +3
b) 2 (3x +1) = -2x +5
c) 5x + 2(x – 1) = 4x + 7.
d) 10x^2 - 5x(2x + 3) = 15
a: =>-x+2x=3-7
=>x=-4
b: =>6x+2+2x-5=0
=>8x-3=0
hay x=3/8
c: =>5x+2x-2-4x-7=0
=>3x-9=0
hay x=3
d: =>10x2-10x2-15x=15
=>-15x=15
hay x=-1
Giải các phương trình sau: a. 2x-5/x+5=3
b. (x^2+2x)-(3x+6)/x-3=0
c. x/2(x-3)+x/2x+2=2x/(x+1)(x-3)
a, ĐKXĐ:\(x\ne-5\)
\(\dfrac{2x-5}{x+5}=3\\ \Rightarrow2x-5=3\left(x+5\right)\\ \Leftrightarrow3x+15-2x+5=0\\ \Leftrightarrow x+20=0\\ \Leftrightarrow x=-20\)
b, ĐKXĐ:\(x\ne3\)
\(\dfrac{\left(x^2+2x\right)-\left(3x+6\right)}{x-3}=0\\ \Rightarrow x^2+2x-3x-6=0\\ \Leftrightarrow x^2-x-6=0\\ \Leftrightarrow\left(x^2+2x\right)-\left(3x+6\right)=0\\ \Leftrightarrow x\left(x+2\right)-3\left(x+2\right)=0\\ \Leftrightarrow\left(x+2\right)\left(x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-2\left(tm\right)\\x=3\left(ktm\right)\end{matrix}\right.\)
c, ĐKXĐ:\(\left\{{}\begin{matrix}x\ne-1\\x\ne3\end{matrix}\right.\)
\(\dfrac{x}{2\left(x-3\right)}+\dfrac{x}{2x+2}=\dfrac{2x}{\left(x+1\right)\left(x-3\right)}\\ \Leftrightarrow x\left(\dfrac{1}{2\left(x-3\right)}+\dfrac{1}{2\left(x+1\right)}-\dfrac{2}{\left(x+1\right)\left(x-3\right)}\right)=0\\ \Leftrightarrow x\left(\dfrac{x+1}{2\left(x-3\right)\left(x+1\right)}+\dfrac{x-3}{2\left(x+1\right)\left(x-3\right)}-\dfrac{4}{2\left(x+1\right)\left(x-3\right)}\right)=0\\ \Leftrightarrow x.\dfrac{x+1+x-3-4}{2\left(x-3\right)\left(x+1\right)}=0\\ \Leftrightarrow\dfrac{x\left(2x-6\right)}{2\left(x-3\right)\left(x+1\right)}=0\\ \Leftrightarrow\dfrac{2x\left(x-3\right)}{2\left(x-3\right)\left(x+1\right)}=0\\ \Leftrightarrow\dfrac{x}{x+1}=0\\ \Rightarrow x=0\left(tm\right)\)
giải pt: x^5 + 2x^4 +3x^3 + 3x^2 + 2x +1=0
giải pt: x^4 + 3x^3 - 2x^2 +x - 3=0
ta có : x^5+2x^4+3x^3+3x^2+2x+1=0
\(\Leftrightarrow\)x^5+x^4+x^4+x^3+2x^3+2x^2+x^2+x+x+1=0
\(\Leftrightarrow\)(x^5+x^4)+(x^4+x^3)+(2x^3+2x^2)+(x^2+x)+(x+1)=0
\(\Leftrightarrow\)x^4(x+1)+x^3(x+1)+2x^2(x+1)+x(x+1)+(x+1)=0
\(\Leftrightarrow\)(x+1)(x^4+x^3+2x^2+x+1)=0
\(\Leftrightarrow\)(x+1)(x^4+x^3+x^2+x^2+x+1)=0
\(\Leftrightarrow\)(x+1)[x^2(x^2+x+1)+(x^2+x+1)]=0
\(\Leftrightarrow\)(x+1)(x^2+x+1)(x^2+1)=0
VÌ x^2+x+1=(x+\(\dfrac{1}{2}\))^2+\(\dfrac{3}{4}\)\(\ne0\) và x^2+1\(\ne0\)
\(\Rightarrow\)x+1=0
\(\Rightarrow\)x=-1
CÒN CÂU B TỰ LÀM (02042006)
b: x^4+3x^3-2x^2+x-3=0
=>x^4-x^3+4x^3-4x^2+2x^2-2x+3x-3=0
=>(x-1)(x^3+4x^2+2x+3)=0
=>x-1=0
=>x=1
|5x+8|=0
|1-3x|=1
|3x+2|=-3
|x-1|=3x+5
|2x-3|=3x-5
|1-6x|=3x+1
giúp em với
1
\(\left|5x+8\right|=0\\ 5x+8=0\\ 5x=8\\ x=\dfrac{8}{5}\\ x=1.6\)
2
\(\left|1-3x\right|=1\\ 1-3x=1\\ \Rightarrow\left\{{}\begin{matrix}1-3x=1\Leftrightarrow3x=0\Leftrightarrow x=0\\1-3x=\left(-1\right)\Leftrightarrow3x=-2\Leftrightarrow x=\dfrac{-2}{3}\end{matrix}\right.\)
3
\(\left|3x+2\right|=-3\Rightarrow\varnothing\)
phương trình vô nghiệm vì giá trị tuyệt đối của mọi số điều không âm
4
\(|x-1|=3x+5\) (1)
Ta có \(|x-1|= x-1 \) khi \(x-1\ge0\Rightarrow x\ge1\)
\(\left|x-1\right|=-\left(x-1\right)=1-x\) khi \(x-1< 0\Rightarrow x< 1\)
Với \(x\ge1\) phương trình (1)
\(x-1=3x+5\\ \Leftrightarrow x-3x=5+1\\ \Leftrightarrow-2x=6\\ \Leftrightarrow x=\dfrac{-6}{2}=-3\)
x= -3 không thỏa mãn điều kiện
Với \(x< 1\) phương trình (1)
\(1-x=3x+5\\ \Leftrightarrow-x-3x=5-1\\ \Leftrightarrow-4x=4\\ \Leftrightarrow-4x\cdot\dfrac{-1}{4}=4\cdot\dfrac{-1}{4}\\ \Leftrightarrow x=-1\)
x=-1 thỏa mãn điều kiện
:v cậu đăng ít thôi nhé pai pai
này mình chưa học đâu cớ tuần sau mới học ấy nhưng mà mình coi dạng rồi làm cho cậu nè ;-;
giải pt:
|3x+5|=2x-2
|x\(^2\)+1|=2x
|2x\(^2\)+3x+1|=|x+1|
a, đk : x >= 1
\(\left[{}\begin{matrix}3x+5=2x-2\\3x+5=2-2x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-7\\x=-\dfrac{3}{5}\end{matrix}\right.\left(ktm\right)\)
vậy pt vô nghiệm
b, đk >= 0
\(\left[{}\begin{matrix}x^2+1=2x\\x^2+1=-2x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)^2=0\\\left(x+1\right)^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\x=-1\left(ktm\right)\end{matrix}\right.\)
c, \(\left[{}\begin{matrix}2x^2+2x=0\\2x^2+4x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x\left(x+1\right)=0\\x^2+2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0;x=-1\\x=-1\end{matrix}\right.\)
giải pt và bất pt sau:
a.5|2x-1|-3=7
b.(2x+3)(x-2)-x^2+4=0
c. 2x-3/2<1-3x/-5
a, \(5\left|2x-1\right|-3=7\Leftrightarrow5\left|2x-1\right|=10\Leftrightarrow\left|2x-1\right|=2\)
TH1 : \(2x-1=2\Leftrightarrow x=\frac{3}{2}\)
TH2 : \(2x-1=-2\Leftrightarrow x=-\frac{1}{2}\)
b, \(\left(2x+3\right)\left(x-2\right)-x^2+4=0\Leftrightarrow\left(2x+3\right)\left(x-2\right)-\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x+3-x-2\right)=0\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\Leftrightarrow x=-1;x=2\)
c, \(\frac{2x-3}{2}< \frac{1-3x}{-5}\Leftrightarrow\frac{2x-3}{2}+\frac{1-3x}{5}< 0\)
\(\Leftrightarrow\frac{10x-15+2-6x}{10}< 0\Rightarrow4x-13< 0\Leftrightarrow x< \frac{13}{4}\)