Tìm GTNN của : \(D=3x^2+y^2+\frac{8y}{x}+\frac{4x}{y}-3x+2y+12\)12
biết:\(x+y\ge4\)
Cho x;y là hai số thực dương thỏa mãn \(x+y\ge4\). Tìm GTNN của biểu thức :
\(D=3x^2+y^2+\frac{32}{x}+\frac{4}{y}-3x+2y\)
Tìm max hoặc min của biểu thức sau:
\(C=\sqrt{2x^2+y^2-4x+2y+3}+\sqrt{3x^2+y^2-6x-8y+19}\)
\(D=\frac{1}{x}\sqrt{\frac{x-1}{x^2-4x+29}}+\frac{1}{y}\sqrt{\frac{y-25}{y^2-100y+2501}}\)
ĐKXĐ: \(x\ge1;y\ge25\)
\(D=\frac{1}{x}\sqrt{\frac{x-1}{\left(x-2\right)^2+25}}+\frac{1}{y}\sqrt{\frac{y-25}{\left(y-50\right)^2+1}}\)
Vì x>=1,y>=25 => x-1>=0,y-25>=0
=> D >= 0
Dấu "=" xảy ra <=> x=1,y=25
Vậy MinD=0 khi x=1,y=25
Ta có: \(\left(x-2\right)^2+25\ge25;\left(y-50\right)^2+1\ge1\)
=>\(\frac{1}{x}\sqrt{\frac{x-1}{\left(x-2\right)^2+25}}\le\frac{1}{x}\sqrt{\frac{x-1}{25}};\frac{1}{y}\sqrt{\frac{y-25}{\left(y-50\right)^2+1}}\le\frac{1}{y}\sqrt{y-25}\)
=>\(D\le\frac{1}{x}\sqrt{\frac{x-1}{25}}+\frac{1}{y}\sqrt{y-25}\)
Vì x>=1 => x-1>=0. Áp dụng bđt cosi với 2 số dương x-1 và 1 ta có:
\(\sqrt{x-1}=\sqrt{\left(x-1\right).1}\le\frac{x-1+1}{2}=\frac{x}{2}\)
=>\(\frac{1}{x}\sqrt{\frac{x-1}{25}}\le\frac{1}{x}\cdot\frac{x}{2}\cdot\frac{1}{\sqrt{25}}=\frac{1}{10}\)
Vì y>=25 => y-25>=0. ÁP dụng bđt cô si cho 2 số dương 25 và y-25 ta có:
\(\sqrt{y-25}=\frac{\sqrt{25\left(y-25\right)}}{5}\le\frac{25+y-25}{2.5}=\frac{y}{10}\)
=>\(\frac{1}{y}\sqrt{y-25}=\frac{1}{y}\cdot\frac{y}{10}=\frac{1}{10}\)
Suy ra \(D\le\frac{1}{10}+\frac{1}{10}=\frac{1}{5}\)
Dấu "=" xảy ra <=> x=2,y=50
Vậy MaxD = 1/5 khi x=2,y=50
Tìm max hoặc min của biểu thức sau:
\(C=\sqrt{2x^2+y^2-4x+2y+3}+\sqrt{3x^2+y^2-6x-8y+19}\)
\(D=\frac{1}{x}\sqrt{\frac{x-1}{x^2-4x+29}}+\frac{1}{y}\sqrt{\frac{y-25}{y^2-100y+2501}}\)
Cho 2 số thực dương thỏa mãn \(x+y\ge4\) Tìm giá trị nhỏ nhất \(P=3x^2+y^2+\frac{32}{x}+\frac{4}{y}-3x+2y\)
Giải hệ phương trình:
1, \(\left\{{}\begin{matrix}x^2+1+y^2+xy=y\\x+y-2=\frac{y}{1+x^2}\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}x^3+8y^3-4xy^2=1\\2x^4+8y^4-2x-y=0\end{matrix}\right.\)
3, \(\left\{{}\begin{matrix}x^2+y^2=\frac{1}{5}\\4x^2+3x-\frac{57}{25}=-y\left(3x+1\right)\end{matrix}\right.\)
4, \(\left\{{}\begin{matrix}\sqrt{12-y}+\sqrt{y\left(12-x\right)}=12\\x^3-8x-1=2\sqrt{y-2}\end{matrix}\right.\)
5, \(\left\{{}\begin{matrix}\left(1-y\right)\sqrt{x-y}+x=2+\left(x-y-1\right)\sqrt{y}\\2y^2-3x+6y+1=2\sqrt{x-2y}-\sqrt{4x-5y-3}\end{matrix}\right.\)
tìm GTNN của A = \(\frac{4y^2-4x^2+6xy}{x^2+y^2}\)
với 0 <x<1 tìm GTNN của C =\(\frac{x}{1-x}+\frac{5}{x}\)
tìm GTLN của D = 3x^2 ( 5 - 3x^2 )
Cho hai số dương x,y thay đổi thỏa mãn điều kiện \(x+y\ge4\)
Tìm min \(P=\frac{3x^2+4}{4x}+\frac{2+y^3}{y^2}\)
Ta có
\(P=\frac{3}{4}x+\frac{1}{x}+\frac{2}{y^2}+y\)
\(=\left(\frac{1}{x}+\frac{x}{4}\right)+\left(\frac{2}{y^2}+\frac{y}{4}+\frac{y}{4}\right)+\frac{1}{2}\left(x+y\right)\)
\(\ge2\sqrt{\frac{1}{x}.\frac{x}{4}}+3\sqrt[3]{\frac{2}{y^2}.\frac{y}{4}.\frac{y}{4}}+\frac{1}{2}.4=1+\frac{3}{2}+2=\frac{9}{2}\)
Vậy MInP=9/2 khi \(\hept{\begin{cases}\frac{1}{x}=\frac{x}{4}\\\frac{2}{y^2}=\frac{y}{4}\\x+y=4\end{cases}\Rightarrow}x=y=2\)
Tìm GTNN của A = \(\frac{3}{x}+\frac{1}{\left(x-2\right)^2}\) với x>2
Cho x, y dương vào x+y\(\ge\)6
Tìm GTNN của P=3x+2y\(+\frac{6}{x}+\frac{8}{y}\)
Các bn giải hộ mk ạ :D
Câu trên mình thấy sai sai vì nếu x càng lớn thì A càng nhỏ , bạn xem lại đề nhé
Câu 2
\(\frac{3}{2}x+\frac{6}{x}\ge6\); \(\frac{1}{2}y+\frac{8}{y}\ge4\)
\(\frac{3}{2}\left(x+y\right)\ge\frac{3}{2}.6=9\)
Cộng các bĐT trên
=> \(3x+2y+\frac{6}{x}+\frac{8}{y}\ge9+6+4=19\)
MinP=19 khi x=2;y=4
tìm GTNN của : |3x-7|+|3x-2|+8
cho x-y =2 . Tìm GTNN của biểu thức B= |2x+1|=|2y+1|
tìm GTLN của : x+\(\frac{1}{2}\)-|x-\(\frac{2}{3}\)|
|3x-7|+|3x-2|+8 >= 5+8 = 13
Dấu "=" xảy ra <=> 3/2 <= x <= 7/3
k mk nha