CMR : \(\left|a\right|-\left|b\right|\frac{< }{ }\left|a-b\right|\)
Áp dụng tìm giá trị lớn nhất của :
\(a,Y=\sqrt{x^2-8x+16}-\sqrt{x^2+2x+1}\)
\(b,Y=\sqrt{4x^2-4x+1}-\sqrt{4x^2-20x+25}\)
\(c,Y=\sqrt{x^2+6x+9}-\sqrt{4x^2+4x+1}\)
Giải các hệ phương trình sau:
a) \(\left\{{}\begin{matrix}4x^2-4xy-14x-3y^2+y+10=0\\5\sqrt{xy}+2x+2y=6\sqrt{y}-8\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}2x^4+3x^2y+4x^2-2y^2+3y+2=0\\\sqrt{x\left(y-1\right)}+2y+2\sqrt{y-1}=3x+2\sqrt{x}+2\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}x^6+3x^2-y^3-6y^2-15y-14=0\\\sqrt{xy+2x-y-2}+6x-2y=10\end{matrix}\right.\)
d) \(\left\{{}\begin{matrix}xy+x+y=x^2-2y^2\\x\sqrt{2y}-y\sqrt{x-1}=2x-2y\end{matrix}\right.\)
Giải phương trình:
a) \(2\sqrt{x^2-4}-3=6\sqrt{x-2}-\sqrt{x+2}\)
b) \(\frac{\sqrt{x-2016}-1}{x-2016}+\frac{\sqrt{y-2017}-1}{y-2017}+\frac{\sqrt{z-2018}-1}{z-2018}=\frac{3}{4}\)
c) \(\sqrt{3+\sqrt{3+x}}=x\)
d) \(\sqrt{6x^2+1}=\sqrt{2x-3}+x^2\)
e) \(\sqrt{x^2+3x+5}+\sqrt{x^2-2x+5}=5\sqrt{x}\)
f) \(\sqrt{x^2+3x}+2\sqrt{x+2}=2x+\sqrt{x+\frac{6}{x}+5}\)
Cho biểu thức: \(A=\frac{\sqrt{x^3}}{\sqrt{xy}-2y}+\frac{2x}{2\sqrt{xy}+2\sqrt{y}-x-\sqrt{x}}.\frac{1-x}{1-\sqrt{x}}\)
a) Rút gọn A
b) Tìm các số nguyên dương x để y =625 và A <0,2
tìm x để các biểu thức sau có nghĩa :
a,\(\sqrt{\frac{4-x}{x+1}}\)
b,\(\sqrt{\frac{2x-3}{3x+1}}\)
c,\(\sqrt{x^2-4}+\sqrt{\frac{x-2}{x+1}}\)
d,\(\sqrt{\frac{x^2-9}{x+1}}\)
e,\(\sqrt{2x-1}+\sqrt{x^3-4x^2-4x+16}\)
f,\(\sqrt{2x-1}-\sqrt{2x^3-11x^2+17x-6}\)
g,\(\frac{1}{\sqrt{x+3}+\sqrt{x^2-1}}\)
giải hệ:
a) \(\left\{{}\begin{matrix}\sqrt{x+3y}+\sqrt{x+y}=2\\\sqrt{x+y}+y-x=1\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x+y+\frac{1}{x}+\frac{1}{y}=4\\x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}=4\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}\left(x-\frac{1}{y}\right)\left(y+\frac{1}{x}\right)=2\\2x^2y+xy^2-4xy=2x-y\end{matrix}\right.\)
d) \(\left\{{}\begin{matrix}2x^2+xy=y^2-3y+2\\x^2-y^2=3\end{matrix}\right.\)
e) \(\left\{{}\begin{matrix}x^2+y^2+z^2+2xy-xz-zy=3\\x^2+y^2-2xy-xz+zy=-1\end{matrix}\right.\)
f) \(\left\{{}\begin{matrix}x^2-y^2+5x-y+6=0\\x^2+\left(x-y\right)^2=2+\sqrt{6x+7}+2\sqrt{x+y+1}\end{matrix}\right.\)
1.Cho x, y là các số thực không âm . Tìm Max của \(\frac{\left(x^2-y^2\right)\left(1-x^2y^2\right)}{\left(1+x^2\right)\left(1+y^2\right)}\)
2.cho a,b,c >0 thỏa mãn \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}=2\).CMR \(abc\le\frac{1}{8}\)
3.Giải phương trình : \(x^3-4\sqrt[3]{4x-3}+3=0\)
4.Tìm x,y thỏa mãn \(5x-2\sqrt{x}\left(2+y\right)+y^2+1=0\)
5.Giải phương trình \(\left(2x^3-3x+1\right)\left(2x^2+5x+1\right)=9x^2\)
6.cho các số dương a , b , c thỏa mãn a+b+c = 4. CMR \(\sqrt[4]{a^3}+\sqrt[4]{b^3}+\sqrt[4]{c^3}>2\sqrt{2}\)
7. Tìm Max của S = \(5x^2+9y^2-12xy+24x-48y+2016\)
8. Giải phương trình \(4\sqrt{x+1}=x^2-5x+14\)
a) Cho x+y=2. Tìm min của \(x^2+y^2\)
b) Cho a, b, c là các số dương thỏa mãn a+b+c \(\le\sqrt{3}\). Tìm max của biểu thức T=\(\frac{a}{\sqrt{a^2+1}}\)+ \(\frac{b}{\sqrt{b^2+1}}\)+\(\frac{c}{\sqrt{c^2+1}}\)