(x-1)*(x-3)*(x+5)*(x+7)-297=0
Giải các phương trình sau (Đặt ẩn phụ)
d) x(x+1)(x2+x+1)=42
e) (x-1)(x-3)(x+5)(x+7)-297=0
f) x4-2x2-144x-1295=0
d: \(x\left(x+1\right)\left(x^2+x+1\right)=42\left(1\right)\)
=>\(\left(x^2+x\right)\left(x^2+x+1\right)=42\)
Đặt \(a=x^2+x\)
Phương trình (1) sẽ trở thành \(a\left(a+1\right)=42\)
=>\(a^2+a-42=0\)
=>(a+7)(a-6)=0
=>\(\left(x^2+x+7\right)\left(x^2+x-6\right)=0\)
mà \(x^2+x+7=\left(x+\dfrac{1}{2}\right)^2+\dfrac{27}{4}>0\forall x\)
nên \(x^2+x-6=0\)
=>(x+3)(x-2)=0
=>\(\left[{}\begin{matrix}x+3=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)
e: \(\left(x-1\right)\left(x-3\right)\left(x+5\right)\left(x+7\right)-297=0\left(2\right)\)
=>\(\left(x-1\right)\left(x+5\right)\left(x-3\right)\left(x+7\right)-297=0\)
=>\(\left(x^2+4x-5\right)\left(x^2+4x-21\right)-297=0\)
Đặt \(b=x^2+4x\)
Phương trình (2) sẽ trở thành \(\left(b-5\right)\left(b-21\right)-297=0\)
=>\(b^2-26b+105-297=0\)
=>\(b^2-26b-192=0\)
=>(b-32)(b+6)=0
=>\(\left(x^2+4x-32\right)\left(x^2+4x+6\right)=0\)
mà \(x^2+4x+6=\left(x+2\right)^2+2>0\forall x\)
nên \(x^2+4x-32=0\)
=>(x+8)(x-4)=0
=>\(\left[{}\begin{matrix}x+8=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-8\\x=4\end{matrix}\right.\)
f: \(x^4-2x^2-144x-1295=0\)
=>\(x^4-7x^3+7x^3-49x^2+47x^2-329x+185x-1295=0\)
=>\(\left(x-7\right)\cdot\left(x^3+7x^2+47x+185\right)=0\)
=>\(\left(x-7\right)\left(x+5\right)\left(x^2+2x+37\right)=0\)
mà \(x^2+2x+37=\left(x+1\right)^2+36>0\forall x\)
nên (x-7)(x+5)=0
=>\(\left[{}\begin{matrix}x-7=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-5\end{matrix}\right.\)
b) (X-1)(X-3)(X+5)(X+7)-297=0( giải bằng cách đặt ẩn dụ nha)
(x-1)(x-3)(x+5)(x+7)-297=0
(x-1)(x+5)(x-3)(x+7)-297=0
( X bình+5x-x-5)(+7x-3x-21)-297=0
( X bình+4x-5)(+4x-21)-297=0
Đặt X bình+4x=t
Ta có pt là:
(t-5)(t-21)-297=0
T bình -21t-5t+105-297=0
T bình-26t-192=0
giải pt ta được:
T1=32
=> X bình+4x=32
tiếp tục giải pt ta được
X1=4
X2=-8
t2 =-6
=>Xbình +4x=-6
Pt này vô nghiệm
S=(4;-8)
(x-1)(x-3)(x+5)(x+7)=297. tìm x
(x-1)(x-3)(x+5)(x+7)-297.=0 (x-1)(x+5)(x-3) (x+7)-297.=0 ( x bình +5x-x-5 ) (+7xX-3X-21)-297.=0 ( X bình +4 x-5 )(+4X-21)-297 =0 đặt X bình +4X=t Ta có pt là :(t-5)(t-21) -297.=0 T bình -21 t-5t+105-297.=0 T bình -26t -192=0 giải pt ta có được :T1=32
=> X bình + 4x =32 tiếp tục giải pt ta được X1=4 X2=-8 t2=-6
=> X bình + 4x-6 pt này vô nhiệm S=( 4; -8 )
tham khảo
Tìm x:
(x-1).(x-3).(x+5).(x+7)=297
\(\Rightarrow\)[ (x-1)(x+5) ].[ (x-3)(x+7) ] = 297
\(\Rightarrow\)( x^2 + 4x - 5 ) . ( x^2 + 4x - 21) = 297 ( bước này mình làm tắt)
\(\Rightarrow\)(x^2 + 4x - 13 + 8) . (x^2 + 4x -13 - 8) = 297
\(\Rightarrow\)(x^2 + 4x - 13)^2 - 64 = 297
\(\Rightarrow\)(x^2 + 4x -13)^2 = 361
\(\Rightarrow\)x^2 + 4x - 13 = 19 hoặc x^ + 4x -13 = -19
phần còn lại tự bạn giải nha
Giải phương trình
:\(\left(x^2+x\right)^2+4\left(x^2+x\right)-12=0\)
\(\left(x-1\right)\left(x-3\right)\left(x+5\right)\left(x+7\right)-297=0\)
a, \(\left(x^2+x\right)^2+4\left(x^2+x\right)-12=0\)
\(\Leftrightarrow x^4+2x^3+x^2+4x^2+4x+12=0\)
\(\Leftrightarrow x^4+2x^3+5x^2+4x-12=0\)
\(\Leftrightarrow x^4-x^3+3x^3-3x^2+8x^2-8x+12x-12=0\)
\(\Leftrightarrow x^3\left(x-1\right)+3x^2\left(x-1\right)+8x\left(x-1\right)+12\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^3+3x^2+8x+12\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^3+2x^2+x^2+2x+6x+12\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[x^2\left(x+2\right)+x\left(x+2\right)+6\left(x+2\right)\right]\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^2+x+6\right)\left(x+2\right)\left(x-1\right)=0\)
có : \(x^2+x+6>0\)
\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=1\end{cases}}}\)
b, \(\left(x-1\right)\left(x-3\right)\left(x+5\right)\left(x+7\right)-297=0\)
\(\Leftrightarrow\left[\left(x-1\right)\left(x+5\right)\right]\left[\left(x-3\right)\left(x+7\right)\right]-297=0\)
\(\Leftrightarrow\left(x^2+4x-5\right)\left(x^2+7x-21\right)-297=0\)
đặt \(x^2+4x-13=t\)
\(\Leftrightarrow\left(t+8\right)\left(t-8\right)-297=0\)
\(\Leftrightarrow t^2-64-297=0\)
\(\Leftrightarrow t^2=361\)
\(\Leftrightarrow t=\pm19\)
có t rồi tìm x thôi
c) C = x(y2 +z2)+y(z2 +x2)+z(x2 +y2)+2xyz.
d) D = x3(y−z)+y3(z−x)+z3(x−y).
e) E = (x+y)(x2 −y2)+(y+z)(y2 −z2)+(z+x)(z2 −x2).
b) x2 +2x−24 = 0.
d) 3x(x+4)−x2 −4x = 0.
f) (x−1)(x−3)(x+5)(x+7)−297 = 0.
(2x−1)2 −(x+3)2 = 0.
c) x3 −x2 +x+3 = 0.
e) (x2 +x+1)(x2 +x)−2 = 0.
a) A = x2(y−2z)+y2(z−x)+2z2(x−y)+xyz.
b) B = x(y3 +z3)+y(z3 +x3)+z(x3 +y3)+xyz(x+y+z). c) C = x(y2 −z2)−y(z2 −x2)+z(x2 −y2).
Đề bài yêu cầu gì vậy em.
Giai pt:
(x-1)(x-3)(x+5)(x+7) = 297
Ta có:\(\left(x-1\right)\left(x-3\right)\left(x+5\right)\left(x+7\right)=297\)
\(\Leftrightarrow\left(x-1\right)\left(x+5\right)\left(x-3\right)\left(x+7\right)=297\)
\(\Leftrightarrow\left(x^2+4x-5\right)\left(x^2+4x-21\right)=297\)
Đặt \(x^2+4x-5=t\) thì \(t\left(t-16\right)=297\)
\(\Leftrightarrow t^2-16t-297=0\Leftrightarrow t^2-27t+11t-297=0\)
\(\Leftrightarrow t\left(t-27\right)+11\left(t-27\right)=0\Leftrightarrow\left(t+11\right)\left(t-27\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t=-11\\t=27\end{cases}}\)
Với \(t=-11\) thì \(x^2+4x-5=-11\Leftrightarrow x^2+4x+6=0\Leftrightarrow x^2+4x+4+2=0\)
\(\Leftrightarrow\left(x+2\right)^2+2=0\)(vô lí)
Với \(t=27\) thì \(x^2+4x-5=27\Leftrightarrow x^2+4x-32=0\Leftrightarrow x^2-4x+8x-32=0\)
\(\Leftrightarrow x\left(x-4\right)+8\left(x-4\right)=0\Leftrightarrow\left(x+8\right)\left(x-4\right)=0\Leftrightarrow\orbr{\begin{cases}x=-8\\x=4\end{cases}}\)
Tập nghiệm của pt \(S=\left\{-8,4\right\}\)
\(\left(x-1\right)\left(x-3\right)\left(x+5\right)\left(x+7\right)=297\)
\(\Leftrightarrow\left[\left(x-1\right)\left(x+5\right)\right]\left[\left(x-3\right)\left(x+7\right)\right]=297\)
\(\Leftrightarrow\left(x^2+5x-x-5\right)\left(x^2+7x-3x-21\right)=297\)
\(\Leftrightarrow\left(x^2+4x-5\right)\left(x^2+4x-21\right)=297\)
Đặt \(x^2+4x-13=m\)
Ta có : \(\left(m+8\right)\left(m-8\right)=297\)
\(\Leftrightarrow m^2-8^2=297\)
\(\Leftrightarrow m^2=361\)
\(\Leftrightarrow m=\pm19\)
+) Với m = 19 ta có : \(x^2+4x-13=19\)
\(\Leftrightarrow x^2+4x-32=0\)
\(\Leftrightarrow\left(x^2-4x\right)+\left(8x-32\right)=0\)
\(\Leftrightarrow x\left(x-4\right)+8\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x+8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x+8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=4\\x=-8\end{cases}}\)
+) Với m = -19 ta có : \(x^2+4x-13=-19\)
\(\Leftrightarrow x^2+4x+6=0\)
\(\Leftrightarrow\left(x^2+4x+4\right)+2=0\)
\(\Leftrightarrow\left(x+2\right)^2+2=0\)
\(\Leftrightarrow\left(x+2\right)^2=-2\) ( vô lí )
Vậy phương trình có tập nghiệm \(S=\left\{4;-8\right\}\)
1) (x-2).(x+4)=0
2) (x-2).(x+15)=0
3) (7-x).(x+19)=0
4) -5<x<1
5) (x-3)(x-5)<0
6) 2x2-3=29
7) -6x-(-7)=25
8) 46-(x-11) = -48
1) \(\left(x-2\right)\left(x+4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2=0\\x+4=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-4\end{matrix}\right.\)
2) \(\left(x-2\right)\left(x+15\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2=0\\x+15=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-15\end{matrix}\right.\)
3) \(\left(7-x\right)\left(x+19\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}7-x=0\\x+19=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=7\\x=-19\end{matrix}\right.\)
4) \(-5< x< 1\)
\(\Rightarrow x\in\left\{-1;-3;-2;-1;0\right\}\)
5) \(\left(x-3\right)\left(x-5\right)< 0\)
\(\Rightarrow\left[{}\begin{matrix}x-3>0\\x-5< 0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x>3\\x< 5\end{matrix}\right.\)
\(\Rightarrow3< x< 5\)
6) \(2x^2-3=29\)
\(\Rightarrow2x^2=29+3\)
\(\Rightarrow2x^2=32\)
\(\Rightarrow x^2=\dfrac{32}{2}\)
\(\Rightarrow x^2=16\)
\(\Rightarrow x^2=4^2\)
\(\Rightarrow\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)
7) \(-6x-\left(-7\right)=25\)
\(\Rightarrow-6x+7=25\)
\(\Rightarrow-6x=25-7\)
\(\Rightarrow-6x=18\)
\(\Rightarrow x=\dfrac{18}{-6}\)
\(\Rightarrow x=-3\)
8) \(46-\left(x-11\right)=-48\)
\(\Rightarrow x-11=48+46\)
\(\Rightarrow x-11=94\)
\(\Rightarrow x=94+11\)
\(\Rightarrow x=105\)
1: (x-2)(x+4)=0
=>x-2=0 hoặc x+4=0
=>x=2 hoặc x=-4
2: (x-2)(x+15)=0
=>x-2=0 hoặc x+15=0
=>x=2 hoặc x=-15
3: (7-x)(x+19)=0
=>7-x=0 hoặc x+19=0
=>x=7 hoặc x=-19
4: -5<x<1
=>\(x\in\left\{-4;-3;-2;-1;0\right\}\)
5: (x-3)(x-5)<0
=>x-3>0 và x-5<0
=>3<x<5
6: 2x^2-3=29
=>2x^2=32
=>x^2=16
=>x=4 hoặc x=-4
7: -6x-(-7)=25
=>-6x=25-7=18
=>x=-3
8: 46-(x-11)=-48
=>x-11=46+48=94
=>x=94+11=105
Giải phương trình sau ( Đặt ẩn phụ )
a) (x^2+x)^2+4(x^2+x)-12=0
b) (x^2+2x+3)^2-9(x^2+2x+3)+18=0
c) (x-2)(x+2)(x^2-10)=72
d) x(x+1)(x^2+x+1)=42
e) (x-1)(x-3)(x+5)(x+7)-297=0
f) x^4-2x^2-144x-1295=0
bn lấy bài này ở đâu, làm sao lop8 giải dc, chị tui lop9 giai
a) đặt t = x2 +x
t2 +4t -12 =0
t2 +4t +4 - 4 -12=0
(t+2 +4)( t +2-4) =0
t+6=0 => t =-6
t-2 =0 => t = 2
rui bn thay t = x2+x giải nhé
câu này toán nâng cao lớp 8 mà . Bạn làm dc câu e , f dc k làm dc làm jup milk vs ............ thanks