Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Rhider
Xem chi tiết
ILoveMath
12 tháng 1 2022 lúc 22:30

\(x^2+y^2+z^2=1\Rightarrow x^2,y^2,z^2\le1\Rightarrow-1\le x,y,z\le1\)

Ta có:\(x^3+y^3+z^3-x^2-y^2-z^2=0\)

\(\Rightarrow x^2\left(x-1\right)+y^2\left(y-1\right)+z^2\left(z-1\right)=0\)

Vì \(x-1\le0,y-1\le0,z-1\le0\)

\(\Rightarrow x^2\left(x-1\right)\text{​​}\le0,y^2\left(y-1\right)\le0,z^2\left(z-1\right)\le0\)

\(\Rightarrow x^2\left(x-1\right)\text{​​}+y^2\left(y-1\right)+z^2\left(z-1\right)\le0\)

Dấu "=" xảy ra khi\(\left\{{}\begin{matrix}x^2\left(x-1\right)=0\\y^2\left(y-1\right)=0\\z^2\left(z-1\right)=0\end{matrix}\right.\)

\(\Rightarrow\left(x,y,z\right)\) là bộ (0,0,1) và các hoán vị

\(\Rightarrow x^{2021}+y^{2021}+z^{2021}=1\)

Thuận Phạm
Xem chi tiết
๖²⁴ʱ乂ų✌й๏✌ρɾ๏༉
Xem chi tiết
vũ thị lan
Xem chi tiết
Trên con đường thành côn...
20 tháng 10 2021 lúc 20:34

undefined

:vvv
Xem chi tiết
Akai Haruma
14 tháng 10 2021 lúc 21:21

Lời giải:
Ta có:

$(x+y+z)^3=x^3+y^3+z^3+3(x+y)(y+z)(x+z)$

$\Leftrightarrow 1^3=1+3(x+y)(y+z)(x+z)$

$\Leftrightarrow (x+y)(y+z)(x+z)=0$

$\Rightarrow x+y=0$ hoặc $y+z=0$ hoặc $x+z=0$

Không mất tổng quát giả sử $x+y=0$

Kết hợp với $x+y+z=1\Rightarrow z=1$

$\Rightarrow x^2+y^2=0$. Kết hợp với $x+y=0$ suy ra $x=y=0$

Do đó: $M=0^{10}+0^{100}+1^{1000}=1$

TH $y+z=0$ và $z+x=0$ ta cũng thu được điều tương tự

Vậy $M=1$

calijack
Xem chi tiết
:vvv
Xem chi tiết
Vịtt Tên Hiền
Xem chi tiết
Lightning Farron
20 tháng 10 2017 lúc 18:13

\(\left\{{}\begin{matrix}x-2\sqrt{y}+1=0\\y-2\sqrt{z}+1=0\\z-2\sqrt{x}+1=0\end{matrix}\right.\)

Cộng theo vế 3 pt trên ta có:

\(\left(x-2\sqrt{x}+1\right)+\left(y-2\sqrt{y}+1\right)+\left(z-2\sqrt{z}+1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{y}-1\right)^2+\left(\sqrt{z}-1\right)^2=0\)

Dễ thấy: \(VT=\left(\sqrt{x}-1\right)^2+\left(\sqrt{y}-1\right)^2+\left(\sqrt{z}-1\right)^2\ge0=VP\)

Xảy ra khi \(\left\{{}\begin{matrix}\sqrt{x}-1=0\\\sqrt{y}-1=0\\\sqrt{z}-1=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}\sqrt{x}=1\\\sqrt{y}=1\\\sqrt{z}=1\end{matrix}\right.\)\(\Rightarrow x=y=z=1\)

Lightning Farron
20 tháng 10 2017 lúc 18:14

Suy ra \(A=x^{1000}+y^{1000}+z^{1000}=1+1+1=3\)

Tran Hai Ly
Xem chi tiết