Lời giải:
Ta có:
$(x+y+z)^3=x^3+y^3+z^3+3(x+y)(y+z)(x+z)$
$\Leftrightarrow 1^3=1+3(x+y)(y+z)(x+z)$
$\Leftrightarrow (x+y)(y+z)(x+z)=0$
$\Rightarrow x+y=0$ hoặc $y+z=0$ hoặc $x+z=0$
Không mất tổng quát giả sử $x+y=0$
Kết hợp với $x+y+z=1\Rightarrow z=1$
$\Rightarrow x^2+y^2=0$. Kết hợp với $x+y=0$ suy ra $x=y=0$
Do đó: $M=0^{10}+0^{100}+1^{1000}=1$
TH $y+z=0$ và $z+x=0$ ta cũng thu được điều tương tự
Vậy $M=1$