Giải phương trình sau:
\(\sqrt{\text{x - 2000}}\)+\(\sqrt{y-2001}\)+\(\sqrt{z-2002}\)=\(\dfrac{1}{2}\)(x+y+z)-3000
\(\sqrt{x-2}+\sqrt{y+2000}+\sqrt{z-2001}=\frac{1}{2}\left(x+y+z\right)\)
Giải phương trình trên
tìm x,y,z biết:
\(\sqrt{x-2000}\) + \(\sqrt{y-2001}\)+ \(\sqrt{z-2002}\)= \(\frac{x+y+z}{2}\)- 3000
giải giúp tớ đi mà các bạn thiên tài! tớ like cho mọi bài giải (chưa cần biết đúng hay sai )
giải phương trình
a) \(4x^2+3x+3-4x\sqrt{x+3}-2\sqrt{2x-1}=0\)
b) \(2x-8\sqrt{2x-3}+9=0\)
c)\(\sqrt{x-2}+\sqrt{y+2000}+\sqrt{z-2001}=\frac{1}{2}\left(x+y+z\right)\)
d) \(x+y+z+23=4\sqrt{x-1}+6\sqrt{y-2}+8\sqrt{z-3}\)
e)\(\sqrt{x-2}+\sqrt{6-x}=\sqrt{x^2-8x+24}\)
\(\hept{\begin{cases}x^2+y^2=1\\\sqrt[1999]{x}-\sqrt[1999]{y}=\left(\sqrt[2000]{y}-\sqrt[2000]{x}\right)\left(x+y+xy+2001\right)\end{cases}}\)Giả các hệ phương trình
Ai giỏi toán hiện hồn giải hộ tớ bài này :3
Cho \( , y , z > 0 \) và không có 2 số nào đồng thời bằng 0 cmr:
\(\sqrt{\dfrac{x}{y+z}}+\sqrt{\dfrac{y}{z+x}}+\sqrt{\dfrac{z}{x+y}}\)
\(\ge2\sqrt{1+\dfrac{xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}}\)
Giải phương trình
\(\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\frac{1}{2}\left(x+y+z\right)\)
Cho x;y;z>0 và không có 2 số nào đồng thời bằng 0.CMR:
\(\sqrt{\dfrac{x}{y+z}}+\sqrt{\dfrac{y}{z+x}}+\sqrt{\dfrac{z}{x+y}}\ge2\sqrt{1+\dfrac{xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}}\)
Giải hệ phương trình: \(\hept{\begin{cases}\left(\sqrt{x}-13\right)\left(\sqrt{y}-14\right)=2\\\left(\sqrt{y}-14\right)\left(\sqrt{z}-15\right)=6\\\left(\sqrt{z}-15\right)\left(\sqrt{x}-13\right)=3\end{cases}}\)