1/1+2+1/1+2+3+1/1+2+3+4+...+1/1+2+3+...+50
Thực Hiện phép tính
B= 1 + 1/2(1+2) + 1/3 (1+2+3)+1/4(1+2+3+4)+....+1/50(1+2+3+....+50)
\(B=1+\dfrac{1}{2}\cdot\dfrac{2\cdot3}{2}+\dfrac{1}{3}\cdot\dfrac{3\cdot4}{2}+...+\dfrac{1}{50}\cdot\dfrac{50\cdot51}{2}\)
\(=1+\dfrac{3}{2}+\dfrac{4}{2}+...+\dfrac{51}{2}\)
\(=\dfrac{50\cdot\dfrac{\left(51+2\right)}{2}}{2}=50\cdot\dfrac{53}{4}=662.5\)
E=-1/3.(1+2+3)-1/4.(1+2+3+4)-...-1/50.(1+2+3+4+...+50)
\(E=-\dfrac{1}{3}\cdot\left(1+2+3\right)-\dfrac{1}{4}\left(1+2+3+4\right)-...-\dfrac{1}{50}\left(1+2+3+...+50\right)\)
\(=\dfrac{-1}{3}\cdot\dfrac{3\cdot4}{2}-\dfrac{1}{4}\cdot\dfrac{4\cdot5}{2}-...-\dfrac{1}{50}\cdot\dfrac{50\cdot51}{2}\)
\(=\dfrac{-4}{2}-\dfrac{5}{2}-...-\dfrac{51}{2}\)
\(=\dfrac{-\left(4+5+...+51\right)}{2}\)
\(=\dfrac{-\left(51+4\right)\cdot\dfrac{48}{2}}{2}=-\dfrac{1320}{2}=-660\)
E=-1/3.(1+2+3)-1/4.(1+2+3+4)-...-1/50.(1+2+3+4+...+50)
Giúp mình với
1/2*1/2+1/3*1/3+1/4*1/4+....+1/50*1/50
1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+1/(1+2+3+4+5)...+1/(1+2+3+4+5...+99)+1/50 là:
Đặt \(S=\frac{1}{1+2}+\frac{1}{1+2+3}+....+\frac{1}{1+2+.....+99}+\frac{1}{50}\)
Đặt E = \(\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+....+99}\)
\(E=\frac{1}{2.3:2}+\frac{1}{3.4:2}+....+\frac{1}{99.100:2}\)
\(\frac{1}{2}E=\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}\)
E = 49/100 : 1/2 = 49/50
Vậy \(S=\frac{49}{50}+\frac{1}{50}=\frac{50}{50}=1\)
1/1+2+ 1/1+2+3 +1/1+2+3+4+...+1/1+2+3+4+...+50
=2/6+2/12+....+2/51.50
=2(1/2.3+1/3.4+...+1/51.50)
=2(1/2 - 1/3 + ....... + 1/50 -1/51)
=2(1/2-1/51)
=2.49/102=49/51
học tốt
P= 1 + 1/1+2 + 1/1+2+3 + 1/1+2+3+4 + ... + 1/ 1+2+3+4+...+50
\(P=1+\frac{1}{1+2}+\frac{1}{1+2+3}+........+\frac{1}{1+2+3+.......+50}=1+\frac{1}{\frac{2.3}{2}}+\frac{1}{\frac{3.4}{2}}+......+\frac{1}{\frac{50.51}{2}}=1+\frac{2}{2.3}+\frac{2}{3.4}+......+\frac{2}{50.51}=1+2\left(\frac{1}{2.3}+\frac{1}{3.4}+......+\frac{1}{50.51}\right)\) \(Taco:\frac{1}{n}-\frac{1}{n+k}=\frac{k}{n\left(n+k\right)}\)
\(\Rightarrow P=1+2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-.......+\frac{1}{50}-\frac{1}{51}\right)=1+2\left(\frac{1}{2}-\frac{1}{51}\right)=1+1-\frac{2}{51}=2-\frac{2}{51}=\frac{100}{51}\)
#)Giải :
Đặt \(A=1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+50}\)
\(\Rightarrow A=\frac{1}{2.3:2}+\frac{1}{3.4:2}+\frac{1}{4.5:2}+...+\frac{1}{50.50:2}\)
\(\Rightarrow A=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{100.101}\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{50.51}\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{50}-\frac{1}{51}\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{2}-\frac{1}{51}\)
\(\Rightarrow\frac{1}{2}A=\frac{49}{102}\)
\(\Rightarrow A=\frac{49}{102}.\frac{1}{2}\)
\(\Rightarrow A=\frac{49}{204}\)
Tính tổng :\(S=1+\frac{1}{2}.\left(1+2\right)+\frac{1}{3}.\left(1+2+3\right)+\frac{1}{4}.\left(1+2+3+4\right)+....+\frac{1}{50}.\left(1+2+3+4+....+50\right)\)
1+1+1+1+1+2+2+2+2+2+3+3+3+3+3+4......+50+50+50+50=???
ai trả lời nhanh nhất mik sẽ tick cho (không cần lời giải)
là 6375
hãy k nếu bạn thấy đây là câu tl đúng :)
chúc bạn hok tốt :P
1 + 1 + 1 + 1 + 1 + 2 + 2 + 2 + 2 + 2 +...+ 50+50+50+50
= 1x5 + 2x5 + 3x5 +...+50x5
=5x(1+2+3+...+50)
=5x1275
=6375
6375 bạn nha
ai thấy đúng thì tk mình nha
gửi kết bạn luôn nha
ai hâm mộ kudo shinichi , kaito kid , ran ,..... nói chung là tất cả cái gì tới liên quan tới thám tử lừng danh conan
kết bạn nha gửi lời mời cho mình mình luôn luôn tk đồng ý
1:
[1/1+2]+[1/1+2+3]+[1/1+2+3+4]+...+[1/1+2+3+4+...+50