Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hương Phùng
Xem chi tiết
Kiêm Hùng
4 tháng 7 2021 lúc 21:01

\(1.\\ A=\sqrt{\left(2+\sqrt{3}\right)^2}+\sqrt{\left(2-\sqrt{3}\right)^2}\\ =\left|2+\sqrt{3}\right|+\left|2-\sqrt{3}\right|\\ =2+\sqrt{3}+2-\sqrt{3}=4\)

\(2.\\a.\\ P=3x-\sqrt{\left(x-5\right)^2}=3x-\left|x-5\right|\\ b.\\ x=2\Rightarrow P=3\)

\(3.\\ M=\dfrac{\sqrt{\left(x-1\right)^2}}{x-1}=\dfrac{\left|x-1\right|}{x-1}\)

\(\cdot x>1\Rightarrow M=1\\ \cdot x=1\Rightarrow M=0\\\cdot x< 1\Rightarrow M=-1\)

Edogawa Conan
4 tháng 7 2021 lúc 21:00

B1.

Ta có:A\(=\sqrt{3+4\sqrt{3}+4}+\sqrt{3-4\sqrt{3}+4}\)

            \(=\sqrt{\left(\sqrt{3}+2\right)^2}+\sqrt{\left(\sqrt{3}-2\right)^2}\)

           \(=\sqrt{3}+2+\sqrt{3}-2=2\sqrt{3}\)

hnamyuh
4 tháng 7 2021 lúc 21:01

Bài 1 : 

\(A=\sqrt{\left(\sqrt{3}+2\right)^2}+\sqrt{\left(\sqrt{3}-2\right)^2}\\ =\sqrt{3}+2+2-\sqrt{3}=4\)

Bài 2 : 

a) \(P=3x-\sqrt{\left(x-5\right)^2}=3x-\left|x-5\right|\)

b) khi x = 2 thì \(P=3.2-\left|2-5\right|=3\)

Bài 3 : 

\(M=\dfrac{\sqrt{\left(\sqrt{x}-1\right)^2}}{x-1}=\dfrac{\left|\sqrt{x}-1\right|}{x-1}\)

Nguyễn Nhật Minh
Xem chi tiết
Milly BLINK ARMY 97
Xem chi tiết
Lấp La Lấp Lánh
30 tháng 9 2021 lúc 19:51

\(\dfrac{x-2\sqrt{x}}{x-4}=\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}}{\sqrt{x}+2}\)

phan anh thư
Xem chi tiết
Xyz OLM
9 tháng 7 2023 lúc 9:29

Có : \(x-2y-\sqrt{xy}+\sqrt{x}-2\sqrt{y}=0\)

\(\Leftrightarrow\left(\sqrt{x}-2\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)+\sqrt{x}-2\sqrt{y}=0\)

\(\Leftrightarrow\left(\sqrt{x}-2\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}+1\right)=0\)

\(\Leftrightarrow\sqrt{x}=2\sqrt{y}\) (Do \(\sqrt{x}+\sqrt{y}+1>0,\forall x;y>0\))

\(\Leftrightarrow x=4y\)

Khi đó \(P=\dfrac{7y}{\left(2\sqrt{y}+3\sqrt{y}\right).\left(\sqrt{x}+2\sqrt{y}\right)}\)

\(=\dfrac{7y}{5\sqrt{y}.4\sqrt{y}}=\dfrac{7}{20}\)

ngan kim
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 8 2023 lúc 12:37

Sửa đề: \(A=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}}{\sqrt{x}+2}\right):\dfrac{2\sqrt{x}}{x-4}\)

ĐKXĐ: x>0; x<>4

\(A=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)+\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{2\sqrt{x}}\)

\(=\dfrac{x+2\sqrt{x}+x-2\sqrt{x}}{2\sqrt{x}}=\dfrac{2x}{2\sqrt{x}}=\sqrt{x}\)

Hà Quang Minh
5 tháng 8 2023 lúc 12:38

Điều kiện: x>2, \(x\ne4\)

\(A=\left(\dfrac{\sqrt{x}}{\sqrt{x-2}}+\dfrac{\sqrt{x}}{\sqrt{x+2}}\right):\dfrac{2\sqrt{x}}{x-4}\\ \Rightarrow A=\sqrt{x}\cdot\dfrac{\sqrt{x+2}+\sqrt{x-2}}{\sqrt{x^2-4}}\cdot\dfrac{x-4}{2\sqrt{x}}\\ \Rightarrow A=\dfrac{\left(x-4\right)\left(\sqrt{x+2}+\sqrt{x-2}\right)}{2\sqrt{x^2-4}}\)

Câu hỏi
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 1 2022 lúc 9:47

a: \(P=\dfrac{2x+4\sqrt{x}-x-6\sqrt{x}}{x-4}=\dfrac{x-2\sqrt{x}}{x-4}=\dfrac{\sqrt{x}}{\sqrt{x}+2}\)

b: Thay x=1 vào P, ta được:

\(P=\dfrac{1}{1+2}=\dfrac{1}{3}\)

Sam Sam
Xem chi tiết
anhduc1501
19 tháng 7 2017 lúc 12:57

câu 2

\(...=\sqrt{\left(2-\sqrt{5}\right)^2}-\sqrt{\left(2+\sqrt{5}\right)^2}=\left|2-\sqrt{5}\right|-\left|2+\sqrt{5}\right|=-4\)

câu 1

\(P=\left(\frac{\sqrt{x}}{3+\sqrt{x}}+\frac{x+9}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\right):\left(\frac{3\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-3\right)}-\frac{1}{\sqrt{x}}\right)\)

\(=\left(\frac{\sqrt{x}\left(3-\sqrt{x}\right)+x+9}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}\right):\left(\frac{3\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)}\right)\)

\(=\frac{3\sqrt{x}+9}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}:\frac{2\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-3\right)}\)

\(=\frac{3}{\left(3-\sqrt{x}\right)}.\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\sqrt{x}+4}=\frac{-3\sqrt{x}}{2\sqrt{x}+4}\)

\(P< -1\Leftrightarrow\frac{-3\sqrt{x}}{2\sqrt{x}+4}+1< 0\Leftrightarrow-\sqrt{x}+4< 0\Leftrightarrow\sqrt{x}>4\Leftrightarrow x>16\)

Dương Tất Đạt
Xem chi tiết
Zen Ryder
13 tháng 12 2023 lúc 23:14

Q = (1 - \(\dfrac{\sqrt{a}-4a}{1-4a}\)) : \(\left[1-\dfrac{1+2a-2\sqrt{a}\left(2\sqrt{a}+1\right)}{1-4a}\right]\)

     = \(\left(\dfrac{1-4a-\sqrt{a}+4a}{1-4a}\right):\left[\dfrac{1-4a-1-2a+4a+2\sqrt{a}}{1-4a}\right]\)

    = \(\dfrac{1-\sqrt{a}}{1-4a}:\left(\dfrac{-2a+2\sqrt{a}}{1-4a}\right)\)

    = \(\dfrac{1-\sqrt{a}}{1-4a}.\dfrac{1-4a}{2\sqrt{a}\left(1-\sqrt{a}\right)}\)

    = \(\dfrac{1}{2\sqrt{a}}\) = \(\dfrac{\sqrt{a}}{2a}\)

 


 

nam
Xem chi tiết
Nguyễn Thành Trương
25 tháng 7 2019 lúc 18:36

a) Ta có:

\(VT=x - 4\sqrt {x - 4} \)

\(= \left( {x - 4} \right) - 2.2\sqrt {x - 4} + 4\)

\( = {\left( {\sqrt {x - 4} } \right)^2} - 2.2\sqrt {x - 4} + {2^2} \)

\(= {\left( {\sqrt {x - 4} - 2} \right)^2}=VP\)

Vế trái bằng vế phải nên đẳng thức được chứng minh.

b) A xác định khi: \(x - 4 \ge 0\) và \(x - 4\sqrt {x - 4} \ge 0\)

\(x - 4 \ge 0 \Leftrightarrow x \ge 4\)

\(\eqalign{
& x - 4\sqrt {x - 4} = \left( {x - 4} \right) - 2.2\sqrt {x - 4} + 4 \cr
& = {\left( {\sqrt {x - 4} - 2} \right)^2} \ge 0\text{( luôn đúng )} \cr} \)

Ta có:

\(A = \sqrt {x + 4\sqrt {x - 4} } + \sqrt {x - 4\sqrt {x - 4} } \)

\( = \sqrt {{{\left( {\sqrt {x - 4} + 2} \right)}^2}} + \sqrt {{{\left( {\sqrt {x - 4} - 2} \right)}^2}} \)

\( = \left| {\sqrt {x - 4} + 2} \right| + \left| {\sqrt {x - 4} - 2} \right|\)

\( = \sqrt {x - 4} + 2 + \left| {\sqrt {x - 4} - 2} \right|\)

- Nếu

\(\eqalign{
& \sqrt {x - 4} - 2 \ge 0 \Leftrightarrow \sqrt {x - 4} \ge 2 \cr
& \Leftrightarrow x - 4 \ge 4 \Leftrightarrow x \ge 8 \cr} \)

thì: \(\left| {\sqrt {x - 4} - 2} \right| = \sqrt {x - 4} - 2\)

Ta có: \(A = \sqrt {x - 4} + 2 + \sqrt {x - 4} - 2 = 2\sqrt {x - 4} \)

- Nếu:

\(\eqalign{
& \sqrt {x - 4} - 2 < 0 \Leftrightarrow \sqrt {x - 4} < 2 \cr
& \Leftrightarrow x - 4 < 4 \Leftrightarrow x < 8 \cr} \)

thì \(\left| {\sqrt {x - 4} - 2} \right| = 2 - \sqrt {x - 4} \)

Ta có: \(A = \sqrt {x - 4} + 2 + 2 - \sqrt {x - 4} = 4\)


CÁC TÁC PHẨM KHÁC Ôn tập chương II - Đường tròn Bài 8. Vị trí tương đối của hai đường tròn (tiếp theo) Bài 7. Vị trí tương đối của hai đường tròn Bài 6. Tính chất của hai tiếp tuyến cắt nhau Bài 5. Dấu hiệu nhận biết tiếp tuyến của đường tròn Bài 4. Vị trí tương đối của đường thẳng và đường tròn Bài 3. Liên hệ giữa dây và khoảng cách từ tâm đến dây Bài 2. Đường kính và dây của đường tròn Bài 1: Sự xác định đường tròn. Tính chất đối xứng của đường tròn Bài tập ôn chương IV - Hàm số bậc hai. Phương trình bậc hai một ẩn. BÀI VIẾT MỚI NHẤT Bài 8.23* trang 87 Sách bài tập Vật lí 10 Nâng cao Bài 8.22 trang 86 Sách bài tập Vật lí 10 Nâng cao Bài 8.21 trang 86 Sách bài tập Vật lí 10 Nâng cao Bài 8.20 trang 86 Sách bài tập Vật lí 10 Nâng cao Bài 8.17 trang 86 Sách bài tập Vật lí 10 Nâng cao Bài 8.15* trang 85 Sách bài tập Vật lí 10 Nâng cao Bài 8.14 trang 85 Sách bài tập Vật lí 10 Nâng cao Bài 8.24* trang 87 Sách bài tập Vật lí 10 Nâng cao Bài 8.12 trang 85 Sách bài tập Vật lí 10 Nâng cao Bài 8.11* trang 85 Sách bài tập Vật lí 10 Nâng cao