Đk: \(x\ge4\)
\(A=\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}\)
\(=\sqrt{\left(x-4\right)+4\sqrt{x-4}+4}+\sqrt{\left(x-4\right)-4\sqrt{x-4}+4}\)
\(=\sqrt{\left(\sqrt{x-4}+2\right)^2}+\sqrt{\left(\sqrt{x-4}-2\right)^2}\)
\(=\sqrt{x-4}+2+\left|\sqrt{x-4}-2\right|\)
TH1:\(\sqrt{x-4}>2\Leftrightarrow x>8\)
\(A=\sqrt{x-4}+2+\sqrt{x-4}-2=2\sqrt{x-4}\)
TH2:\(\sqrt{x-4}\le2\Leftrightarrow4\le x\le8\)
\(A=\sqrt{x-4}+2-\left(\sqrt{x-4}-2\right)=4\)
Vậy...