cho tam giac ABC vuong tai A co AB=6,BC=10,ke duong cao AH H thuoc BC tren canh BC lay D HB=HD
tinh AC
cm tam giac ABD can
cho tam giac abc vuong tai a,co ab=3cm,ac=4cm.
a)tinh bc va so sanhcac goc cua tam giac abc
b)ke ah vuong goc voi bc,lay d tren bc sao cho h la trung diem cua bd.cm:tam giac abd can tai a
c)tren ah lay m sao cho h la trung diem cua am.cm:tam giac abm la tam giac can
a: BC=5cm
Xét ΔABC có AB<AC<BC
nên \(\widehat{C}< \widehat{B}< \widehat{A}\)
b: Xét ΔABD có
AH là đường cao
AH là đường trung tuyến
Do đó: ΔABD cân tại A
CHO TAM GIAC ABC CAN TAI A, CO AB=AC=5CM, BC=8CM. KE AH VUONG GOC BC(H THUOC BC)CHUNG MINH
A) HB=HC VA GOC BAH=GOC CAH
B) TINH AH
C) GOI D VA E LA CHAN DUONG VUONG GOC KE TU H DEN AB VA AC CHUNG MINH TAM GIAC HDE CAN
Cho tam giac ABC can tai A duong cao AH ,tu d bat ki tren canh AB ha DE vuong goc voi BC ,e thuoc BC.Tren HC lay diem F sao cho FC = EH.Qua C ke duong q sao cho QC =FH ,tu Qke duong thang vuong goc voi BC tai Qcat AC tai P.CMR :DC=GP va DEG =90do
cho tam giac abc vuong tai a co goc b bang 60 do tren canh bc lay diem h sao cho hb=ab duong vuong goc voi bc tai h cat ac tai d
a/ cm bd la tia phan giac cua goc adc
b/ chung to tam giac bdc can
cho tam giac ABC v uong tai A (AB < AC ) , ke AH vuong goc voi BC tai H . tren canh AC lay diem I sao cho AH =AI . qua I ke duong thang vuong goc voi A C , cat BC tai D
a, CMR : tam giac AHD = tam giac AID va` AD la tia phan giac cua ∠HAC
b, tia ID cat tia AH tai M . CMR △MCD can
c, go.i N la` trung diem cua MC . CMR AN,MI,BC do^`ng quy
a: Xét ΔAHD vuông tại H và ΔAID vuông tại I có
AD chung
AH=AI
=>ΔAHD=ΔAID
=>góc HAD=gócIAD
=>AD là phân giác của góc HAI
b: Xét ΔDHM vuông tại H và ΔDIC vuông tại I có
DH=DI
góc HDM=góc IDC
=>ΔDHM=ΔDIC
=>DM=DC
=>ΔDMC cân tại D
c: AH+HM=AM
AI+IC=AC
mà AH=AI và HM=IC
nên AM=AC
=>ΔAMC cân tại A
mà AN là trung tuyến
nên AN vuông góc MC
Xét ΔCAM có
AN,MI,CH là các đường cao
=>AN,MI,CH đồng quy
Cho tam giac ABC vuong tai A ( AB<AC) ve duong cao AH (H thuoc BC)
A) cm tam giac ABH dong dang tam giac CBA suy ra AB binh =BH.BC
B) Cho AB =6cm , AC=8cm. Tinh BC .Tren canh BC lay diem E sao cho CE=4cm, cm BE binh =BH.HC
C) Tinh dien tich tam giac ABH
D) Duong phan giac cua goc AHB cat AB tai D duong phan giac cua goc AHC cat AC tai F duong thanh DF cat AH tai I va cat CB tai K. Cm DI .FK=DK.FI
A) Xét \(\Delta_VABH\) và \(\Delta_vCBA\):
\(\widehat{B}\): chung
\(\Rightarrow\Delta_vABH\sim\Delta_vCBA\left(gn\right)\)
B) Đề sai vì BC\(=\sqrt{6^2+8^2}=10\left(cm\right)\)
\(\Rightarrow BE=10-4=6\left(cm\right)\)
\(AH=\frac{6.8}{10}=4,8\left(cm\right)\)
mà \(AH^2=BH.HC\) nên AH=BE
Vậy đề sai.
C) Có: \(BH=\frac{AB^2}{BC}=\frac{6^2}{10}=3,6\left(cm\right)\)
\(S_{ABH}=\frac{1}{2},3,6.4,8=8,64\left(cm^2\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(HB\cdot HC=AH^2\)
=>HB*HC=4^2=16
mà HB+HC=10cm
nên HB,HC là hai nghiệm của phương trình:
\(x^2-10x+16=0\)
=>(x-8)(x-2)=0
=>\(\left[{}\begin{matrix}x=8\\x=2\end{matrix}\right.\)
Do đó, chúng ta sẽ có 2 trường hợp là \(\left[{}\begin{matrix}BH=8cm;CH=2cm\\BH=2cm;CH=8cm\end{matrix}\right.\)
cho tam giac abc vuong can tai a. goi b la diem tren canh bc, bi la phan giac cua tam giac abd, duong cao im cua tam giac bid cat duong vuong goc voi ac ke tu c tai n. tinh goc ibn