Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vân Anh
Xem chi tiết
Đoàn Thị Thu Hương
Xem chi tiết
Nguyễn Duy Đạt
Xem chi tiết
Nguyễn Dương
Xem chi tiết
Akai Haruma
7 tháng 3 2020 lúc 15:21

Lời giải:

Áp dụng BĐT Cô-si cho các số không âm:

$a^2+1\geq 2\sqrt{a^2}=2|a|\geq 2a$

$b^2+16\geq 2\sqrt{16b^2}=2|4b|\geq 8b$

$\Rightarrow a^2+b^2+17\geq 2(a+4b)=2.17$

$\Rightarrow a^2+b^2\geq 17$

Vậy $A_{\min}=17$ khi $a=1; b=4$

Với từng ấy điều kiện đề bài thì không tìm được max của $a^2+b^2$

Khách vãng lai đã xóa
Nguyễn Ngọc Phương Trinh
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 9 2023 lúc 20:43

loading...  

Minh Phương
11 tháng 9 2023 lúc 20:47

\(a.2a+4b+\left(-4b+5a\right)-\left(6a-9b\right)\) 

\(=2a+4b-4b+5a-6a+9b\) 

\(=\left(2a+5a-6a\right)+\left(4b-4b+9b\right)\) 

\(=a+9b\) 

\(b.6a\left[b+3a-\left(4a-b\right)\right]\) 

\(=6a\left[b+3a-4a+b\right]\) 

\(=6a\left[4a-a+b+b\right]\) 

\(=6a\left(3a-2b\right)\) 

Nguyễn Tất Đạt
Xem chi tiết
Pain Thiên Đạo
26 tháng 5 2018 lúc 19:15

tích đi rồi ta làm

Pain Thiên Đạo
26 tháng 5 2018 lúc 19:48

tích đi bạn

Nguyễn Thị Lan Hương
Xem chi tiết
Thuyết Dương
Xem chi tiết
Kirigawa Kazuto
23 tháng 11 2016 lúc 14:59

\(\frac{a}{b}=\frac{4}{7}\Rightarrow\frac{a}{4}=\frac{b}{7}=k\)

=> a = 4k ; b = 7k

Thay vào đẳng thức ta có :

4b2 - 6a2 = 49

4.(7k)2 - 6.(4k)2 = 49

4.49.k2 - 6.16.k2 = 49

k2(4.49 - 6.16) = 49

k2 . 100 = 49

=> \(k^2=\frac{49}{100}\)

=> \(k=\left[\begin{array}{nghiempt}\frac{7}{10}\\-\frac{7}{10}\end{array}\right.\)

Với k = 7/10

=> \(a=\frac{4.7}{10}=\frac{28}{10}=2,8\)

\(b=\frac{7.7}{10}=\frac{49}{10}=4,9\)

=> 3a + 2b = 3. 2,8 + 2. 4,9 = 8,4 + 9,8 = 18,2

Với k = -7/10

\(\Rightarrow a=\frac{4.\left(-7\right)}{10}=-\frac{28}{10}=-2,8\)

\(b=\frac{7.\left(-7\right)}{10}=-\frac{49}{10}=-4,9\)

=> 3a + 2b = 3 . (-2,8) + 7 . (-4,9) = (-8,4) + (-9,8) = -18,2

=> Trị nhỏ nhất là -18,2

Nguyễn Dương
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 3 2020 lúc 11:20

\(\left(4a-b\right)^2=\left(2\sqrt{2}.\sqrt{2}a-\frac{1}{2}.2b\right)^2\le\left(8+\frac{1}{4}\right)\left(2a^2+4b^2\right)=1089\)

\(\Rightarrow-33\le4a-b\le33\)

\(\Rightarrow-67\le M\le-1\)

\(M_{min}\) khi \(\left\{{}\begin{matrix}a=-8\\b=1\end{matrix}\right.\)

\(M_{max}\) khi \(\left\{{}\begin{matrix}a=8\\b=-1\end{matrix}\right.\)

Khách vãng lai đã xóa