cho một góc 19 độ dùng thước và compa dựng góc 1 độ
a) Cho 6 tam giác đều có cùng độ dài cạnh. Hãy ghép 6 tam giác đều thành một hình (Hình 6).
b) Dùng compa và thước đo góc đo các cạnh và góc của hình vừa nhận được. Cho ý kiến nhận xét.
a) Ghép 6 tam giác đều thành hình mới.
b) Hình vừa nhận được có các góc bằng nhau, các cạnh bằng nhau.
Đây là hình lục giác đều.
Dựng góc 30 0 bằng thước và compa.
Cách dựng:
- Dựng tam giác đều ABC
- Dựng tia phân giác AD của ∠ (BAC)
Ta có ∠ (BAD) = 30 0
Chứng minh:
∆ ABC đều ⇒ ∠ (BAC) = 60 0
∠ (BAD) = ∠ (BAC)/2 (tính chất tia phân giác) ⇒ ∠ (BAD) = 30 0
Dựng góc 75 0 bằng thước và compa.
Cách dựng:
- Dựng ∆ ABC đều
- Trên nửa mặt phẳng bờ AC chứa điểm B dựng tia Ax ⊥ AC
- Dựng tia phân giác Ay của ∠ (xAB)
Ta có: ∠ (CAy) = 75 0
Chứng minh: Thật vậy, ∆ ABC đều nên ∠ (BAC) = 60 0 , ∠ (xAC) = 90 0
⇒ ∠ (BAx) = ∠ (xAC) - ∠ (BAC)
⇒ ∠ (BAx) = 90 0 – 60 0 = 30 0
⇒ ∠ (BAy) = 1/2 ∠ (BAx) = 1/2. 30 0 = 15 0
Do đó, ∠ (CAy) = ∠ (CAB) + ∠ (BAy) = 60 0 + 15 0 = 75 0
dùng thước và compa để chia góc vuông cho trước thành 3 góc có số đo bằng nhau
Dựng góc \(75^0\) bằng thước và compa ?
Dựng góc \(30^0\) bằng thước và compa ?
- Dựng tam giác ABC đều
- Dựng tia phân giác AD của góc A
Ta có :
\(\widehat{BAD}=30^0\)
Cho đường thẳng d và điểm P không nằm trên d. Hình 46 minh họa cho cách dựng đường thẳng đi qua điểm P vuông góc với đường thẳng d bằng thước và compa như sau:
(1) Vẽ đường tròn tâm P với bán kính thích hợp sao cho nó có cắt d tại hai điểm A và B.
(2) Vẽ hai đường tròn với bán kính bằng nhau có tâm tại A và B sao cho chúng cắt nhau. Gọi một giao điểm của chúng là C (C ≠ P)
(3) Vẽ đường thẳng PC.
Em hãy chứng minh đường thẳng PC vuông góc với d.
Đố: Tìm thêm một cách dựng nữa (bằng thước và compa)
a) Ta có: PA = PB (A; B nằm trên cung tròn tâm P) nên P nằm trên đường trung trực của AB.
CA = CB (C nằm trên 2 cung tròn tâm A, B bán kính bằng nhau) nên C nằm trên đường trung trực của AB.
Vậy CP là đường trung trực của AB, suy ra PC ⊥ d.
QUẢNG CÁOb) Một cách vẽ khác
- Lấy hai điểm A, B bất kì trên d.
- Vẽ cung tròn tâm A bán kính AP, cung tròn tâm B bán kính BP. Hai cung tròn cắt nhau tại C (C khác P).
- Vẽ đường thẳng PC. Khi đó PC là đường đi qua P và vuông góc với d.
Chứng minh :
- Theo định lí 2 :
PA = CA ( P,C cùng thuộc cung tròn tâm A bán kính PA)
⇒ A thuộc đường trung trực của PC.
PB = CB (P, C cùng thuộc cung tròn tâm B bán kính PB)
⇒ B thuộc đường trung trực của PC.
⇒ AB là đường trung trực của PC
⇒ PC ⏊ AB hay PC ⏊ d.
Chứng minh rằng: Nếu tam giác ABC có đường trung tuyến xuất phát từ A bằng một nửa cạnh BC thì tam giác đó vuông tại A.
Ứng dụng: Một tờ giấy bị rách mép (h.65). Hãy dùng thước và compa dựng đường vuông góc với cạnh AB tại A.
Cho tam giác ABC. Dùng thước và compa vẽ các tia phân giác của các góc A, B, C.
Cách vẽ phân giác của góc A (Dựa trên kết quả bài 20).
Vẽ cung tròn tâm A cung này cắt tia AB ,AC theo thứ tự ở M,N
Vẽ các cung tròn tâm M và tâm N có cùng bán kính sao cho chúng cắt nhau ở điểm I.
Nối AI, ta được AI là tia phân giác của góc A.
- Tương tự cho cách vẽ tia phân giác của góc B, C