Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Anh Đỗ Nguyễn Thu
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 2 2020 lúc 15:15

Số hạng cuối là \(\frac{20}{\sqrt{y+2}}\) hay \(\frac{20}{\sqrt{y+z}}\) vậy bạn?

Khách vãng lai đã xóa
Nguyễn Việt Lâm
26 tháng 2 2020 lúc 15:33

\(3\left(x+y+z\right)=\left(x+y\right)^2+z^2\ge\frac{1}{2}\left(x+y+z\right)^2\)

\(\Rightarrow x+y+z\le6\)

\(P\ge x+y+z+\frac{80}{\sqrt{x+z}+\sqrt{y+2}}=x+y+z+\frac{320}{2.2\sqrt{x+z}+2.2\sqrt{y+2}}\)

\(P\ge x+y+z+\frac{320}{4+x+z+4+y+2}=x+y+z+\frac{320}{x+y+z+10}\)

\(P\ge x+y+z+10+\frac{256}{x+y+z+10}+\frac{64}{x+y+z+10}-10\)

\(P\ge2\sqrt{\frac{256\left(x+y+z+10\right)}{x+y+z+10}}+\frac{64}{6+10}-10=26\)

Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(1;2;3\right)\)

Khách vãng lai đã xóa
Văn Thắng Hồ
Xem chi tiết
Akai Haruma
5 tháng 8 2020 lúc 14:52

Bài 1:
Áp dụng BĐT AM-GM:

$3=a+b+c\geq 3\sqrt[3]{abc}\Rightarrow abc\leq 1$

$(ab+bc+ac)^2\geq 3abc(a+b+c)=9abc\Rightarrow \frac{2}{3+ab+bc+ac}\leq \frac{2}{3+3\sqrt{abc}}$

Áp dụng BĐT Holder $(1+a)(1+b)(1+c)\geq (1+\sqrt[3]{abc})^3\Rightarrow \sqrt[3]{\frac{abc}{(a+1)(b+1)(c+1)}}\leq \sqrt[3]{\frac{abc}{(1+\sqrt[3]{abc})^3}}$

Đặt $\sqrt[6]{abc}=t$. Trong đó $0< t\leq 1$ thì:

$P\leq \frac{2}{3+3t^3}+\frac{t^3}{6}+\frac{t^2}{t^2+1}$

Ta sẽ chỉ ra $\frac{2}{3+3t^3}+\frac{t^3}{6}+\frac{t^2}{t^2+1}\leq 1$

$\Leftrightarrow \frac{2}{3+3t^3}+\frac{t^3}{6}\leq \frac{1}{t^2+1}$

$\Leftrightarrow t^8+t^6+t^5-5t^3+4t^2-2\leq 0$

$\Leftrightarrow (t-1)[t^7+t^6+2t^5+3t^4+3t^3+2t(1-t)+2]\leq 0$ (luôn đúng với mọi $0< t\leq 1$

Do đó $P\leq 1$

Vậy $P_{\max}=1$ khi $a=b=c=1$

Akai Haruma
5 tháng 8 2020 lúc 15:23

Bài 2 bạn xem viết có sai đề không?

le tri tien
20 tháng 8 2020 lúc 20:43

:3 em từ olm sang đây có gì sai thì chỉ bảo

Áp dụng bất đẳng thức \(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\forall x;y;z\inℝ\)

ta có \(\left(ab+bc+ca\right)^2\ge3abc\left(a+b+c\right)=9abc>0\Rightarrow ab+bc+ca\ge3\sqrt{abc}\)Ta lại có \(\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge\left(1+\sqrt[3]{abc}\right)^3\forall a;b;c>0\)

Thật vậy \(\left(1+a\right)\left(1+b\right)\left(1+c\right)=1+\left(a+b+c\right)+\left(ab+bc+ca\right)+abc\)

\(\ge1+3\sqrt[3]{abc}+3\sqrt[3]{\left(abc\right)^2}+abc=\left(1+\sqrt[3]{abc}\right)^3\)

Khi đó \(P\le\frac{2}{3\left(1+\sqrt{abc}\right)}+\frac{\sqrt[3]{abc}}{1+\sqrt[3]{abc}}+\frac{\sqrt{abc}}{6}\)

Đặt \(\sqrt[6]{abc}=t\Rightarrow\sqrt[3]{abc}=t^2,\sqrt{abc}=t^3\)

Vì a,b,c > 0 nên 0<abc \(\le\left(\frac{a+b+c}{3}\right)^2=1\Rightarrow0< t\le1\)

Xét hàm số \(f\left(t\right)=\frac{2}{3\left(1+t^3\right)}+\frac{t^2}{1+t^2}+\frac{1}{6}t^3;t\in(0;1]\)

\(\Rightarrow f'\left(t\right)=\frac{2t\left(t-1\right)\left(t^5-1\right)}{\left(1+t^3\right)^2\left(1+t^2\right)^2}+\frac{1}{2}t^2>0\forall t\in(0;1]\)

Do hàm số đồng biến trên (0;1] nên \(f\left(t\right)< f\left(1\right)\Rightarrow P\le1\)

\(\Rightarrow\frac{2}{3+ab+bc+ca}+\frac{\sqrt{abc}}{6}+\sqrt[3]{\frac{abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\le1\)

Dấu ''='' xảy ra khi \(a=b=c=1\)

Lê Ngọc Diệp
Xem chi tiết
Nguyễn Mai
Xem chi tiết
Phùng Minh Quân
5 tháng 12 2019 lúc 20:40

\(Q=\Sigma\frac{x^4}{x^2+\sqrt{xy.zx}}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2+xy+yz+zx}\ge\frac{x^2+y^2+z^2}{2}\ge\frac{\left(x+y+z\right)^2}{6}=\frac{3}{2}\)

Dấu "=" xảy ra khi x=y=z=1 

Khách vãng lai đã xóa
Lê Ngọc Diệp
Xem chi tiết
Bùi Quang Vinh
26 tháng 10 2015 lúc 17:26

của ? 

=> THIẾU ĐỀ

Nguyễn Khánh Linh
29 tháng 7 2021 lúc 21:50

Ta có: P2 = \(\dfrac{x^2}{y}+\dfrac{y^2}{z}+\dfrac{z^2}{x}+2\left[\dfrac{xy}{\sqrt{yz}}+\dfrac{yz}{\sqrt{zx}}+\dfrac{zx}{\sqrt{xy}}\right]\)

Áp dụng BĐT Cô-si ta có: \(\dfrac{x^2}{y}+\dfrac{xy}{\sqrt{yz}}\dfrac{xy}{\sqrt{yz}}+z\ge4x\)

Tương tự cộng lại ta có: \(P^2+\left(x+y+z\right)\ge4\left(x+y+z\right)\)

\(\Rightarrow P^2\ge3\left(x+y+z\right)\ge36\Rightarrow P\ge6\)

Dấu"=" xảy ra \(\Leftrightarrow\)x=y=z=4

Lê Ngọc Diệp
Xem chi tiết
I lay my love on you
Xem chi tiết
coolkid
17 tháng 2 2020 lúc 11:54

\(RHS\ge\frac{\left(x+y+z\right)^2}{\sqrt{5x^2+2xy+y^2}+\sqrt{5y^2+2yz+z^2}+\sqrt{5z^2+2zx+x^2}}\)

Thử chứng minh \(\sqrt{5x^2+2xy+y^2}\le\frac{3\sqrt{2}}{2}x+\frac{\sqrt{2}}{2}y\) cái này xem sao

khi đó:

\(RHS\ge\frac{9}{\frac{3\sqrt{2}}{2}\left(x+y+z\right)+\frac{\sqrt{2}}{2}\left(x+y+z\right)}=\frac{3}{2\sqrt{2}}\)

Dấu "=" xảy ra tại x=y=z=1

Khách vãng lai đã xóa
Thanh Tùng DZ
20 tháng 2 2020 lúc 10:34

Cần chứng minh BĐT sau : \(\frac{x^2}{\sqrt{5x^2+2xy+y^2}}\ge\frac{5x-y}{8\sqrt{2}}\)

\(\Leftrightarrow8\sqrt{2}x^2\ge\left(5x-y\right)\sqrt{5x^2+2xy+y^2}\) ( 1 )

Xét 5x - y \(\le\)\(\Rightarrow\)VT \(\ge\)0 ; VP \(\le\)\(\Rightarrow\)BĐT đã được chứng minh

Xét 5x - y \(\ge\)0 . Bình phương 2 vế của ( 1 ), ta được :

\(128x^4\ge\left(25x^2-10xy+y^2\right)\left(5x^2+2xy+y^2\right)\)

\(\Leftrightarrow128x^4\ge125x^4+10x^2y^2-8xy^3+y^4\)

\(\Leftrightarrow3x^4-10x^2y^2+8xy^3-y^4\ge0\)

\(\Leftrightarrow\left(3x^4-3xy^3\right)+\left(10xy^3-10x^2y^2\right)+\left(xy^3-y^4\right)\ge0\)

\(\Leftrightarrow3x\left(x-y\right)\left(x^2+xy+y^2\right)+10xy^2\left(y-x\right)+y^3\left(x-y\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)\left(3x^3+3x^2y+3xy^2-10xy^2+y^3\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)\left[\left(3x^3-3xy^2\right)+\left(3x^2y-3xy^2\right)-\left(xy^2-y^3\right)\right]\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(3x^2+6xy-y^2\right)\ge0\)( luôn đúng )

( Vì \(5x-y\ge0\Rightarrow x\ge\frac{y}{5}\)\(\Rightarrow3x^2+6xy-y^2\ge3.\left(\frac{y}{5}\right)^2+6.\frac{y}{5}.y-y^2=\frac{8}{25}y^2\ge0\)

Tương tự : \(\frac{y^2}{\sqrt{5y^2+2yz+z^2}}\ge\frac{5y-z}{8\sqrt{2}}\)\(\frac{z^2}{\sqrt{5z^2+2xz+x^2}}\ge\frac{5z-x}{8\sqrt{2}}\)

Cộng từng vế 3 BĐT lại với nhau, ta được : 

\(\frac{x^2}{\sqrt{5x^2+2xy+y^2}}+\frac{y^2}{\sqrt{5y^2+2yz+z^2}}+\frac{z^2}{\sqrt{5z^2+2xz+x^2}}\)

\(\ge\frac{5x-z+5y-z+5z-x}{8\sqrt{2}}=\frac{4\left(x+y+z\right)}{8\sqrt{2}}=\frac{3}{2\sqrt{2}}\)

Dấu "=' xảy ra khi x = y = z = 1

Vậy BĐT đã được chứng minh

Khách vãng lai đã xóa
coolkid
23 tháng 2 2020 lúc 18:25

Thanh Tùng DZ Bài này trên face họ dùng đạo hàm khiếp quá giờ thấy cách anh hay thật !

Khách vãng lai đã xóa
Anh Tuan Le Xuan
Xem chi tiết
Nguyễn Quốc Huy
Xem chi tiết
Trần Phúc Khang
31 tháng 5 2019 lúc 10:21

b, Ta có 

\(\frac{\sqrt{x}+1}{y+1}=\frac{\left(\sqrt{x}+1\right)\left(y+1\right)-y-y\sqrt{x}}{y+1}=\sqrt{x}+1-\frac{y\left(\sqrt{x}+1\right)}{y+1}\)

Mà \(y+1\ge2\sqrt{y}\)

=> \(\frac{\sqrt{x}+1}{y+1}\ge\sqrt{x}+1-\frac{1}{2}\sqrt{y}\left(\sqrt{x}+1\right)\)

Khi đó

\(P\ge\frac{1}{2}\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)+3-\frac{1}{2}\left(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\right)\)

Mà \(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\le\frac{\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2}{3}=3\)

=> \(P\ge\frac{1}{2}.3+3-\frac{3}{2}=3\)

Vậy MinP=3 khi x=y=z=1