Số hạng cuối là \(\frac{20}{\sqrt{y+2}}\) hay \(\frac{20}{\sqrt{y+z}}\) vậy bạn?
\(3\left(x+y+z\right)=\left(x+y\right)^2+z^2\ge\frac{1}{2}\left(x+y+z\right)^2\)
\(\Rightarrow x+y+z\le6\)
\(P\ge x+y+z+\frac{80}{\sqrt{x+z}+\sqrt{y+2}}=x+y+z+\frac{320}{2.2\sqrt{x+z}+2.2\sqrt{y+2}}\)
\(P\ge x+y+z+\frac{320}{4+x+z+4+y+2}=x+y+z+\frac{320}{x+y+z+10}\)
\(P\ge x+y+z+10+\frac{256}{x+y+z+10}+\frac{64}{x+y+z+10}-10\)
\(P\ge2\sqrt{\frac{256\left(x+y+z+10\right)}{x+y+z+10}}+\frac{64}{6+10}-10=26\)
Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(1;2;3\right)\)