ý sai đề rồi =))
x,y,z > 0. Tìm GTNN của
\(P=\left(x-1\right)^2+\left(y-2\right)^2+\left(z-1\right)^2+\dfrac{12}{\left(x+y\right)\sqrt{x+y}+1}+\dfrac{12}{\left(y+z\right)\sqrt{y+z}+1}\)
Các bạn giúp mk với ^^^^^^
ý sai đề rồi =))
x,y,z > 0. Tìm GTNN của
\(P=\left(x-1\right)^2+\left(y-2\right)^2+\left(z-1\right)^2+\dfrac{12}{\left(x+y\right)\sqrt{x+y}+1}+\dfrac{12}{\left(y+z\right)\sqrt{y+z}+1}\)
Các bạn giúp mk với ^^^^^^
Cho x,y,z > 0 thỏa mãn xy + yz + xz = 1 . Chứng minh \(\dfrac{27}{4}\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge\left(\sqrt{x+y}+\sqrt{y+z}+\sqrt{x+z}\right)^2\ge6\sqrt{3}\)
chứng minh với x,y,z>0,xyz=1
\(\dfrac{1}{x^2\left(y+z\right)}+\dfrac{1}{y^2\left(z+x\right)}+\dfrac{1}{z^2\left(x+y\right)}\ge\dfrac{3}{2}\)
1. Cho \(x,y,z\) là 3 số thực dương thõa mản xyz = 1. C/m BĐT
\(\dfrac{1}{\left(2x+y+z\right)^2}+\dfrac{1}{\left(2x+y+z\right)^2}+\dfrac{1}{\left(2x+y+z\right)^2}\le\dfrac{3}{16}\)
2. Cho x,y,z không âm và thõa mản \(x^2+y^2+z^2=1\). C/m BĐT
\(\left(x^2y+y^2z+z^2x\right)\left(\dfrac{1}{\sqrt{x^2+1}}+\dfrac{1}{\sqrt{y^2+1}}+\dfrac{1}{\sqrt{z^2+1}}\right)\le\dfrac{3}{2}\)
Chứng minh BĐT \(\sqrt[3]{\left(x^2+1\right)\left(y^2+1\right)\left(z^2+1\right)}\le\dfrac{\left(x+y+z\right)^2}{3}+1\)
với x,y,z>0 và \(Min\left\{xy,yz,zx\right\}\ge1\)
Cho \(\left\{{}\begin{matrix}x,y,z>0\\x>max\left\{y,z\right\}\end{matrix}\right.\). Tìm Min của:
\(M=\dfrac{x}{y}+2\sqrt{1+\dfrac{y}{z}}+3\sqrt[3]{1+\dfrac{z}{x}}\)
Cho x, y, z >0 thoả mãn \(x^2+y^2+z^2=1\) . Cmr: \(\frac{x+y+z}{xy+yz+xz}\ge\sqrt{3}+\frac{1}{2\sqrt{3}}\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\)
Đề: Cho \(\left\{{}\begin{matrix}x,y,z>0\\x+y\le z\end{matrix}\right.\) tìm Min của \(\left(x^2+y^2+z^2\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\right)\) Làm thế này không biết đúng ko
Ta có :A= \(\left(x^2+y^2+z^2\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\right)=3+\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+\dfrac{z^2}{x^2}+\dfrac{x^2}{z^2}+\dfrac{z^2}{y^2}+\dfrac{y^2}{z^2}\)
=> A \(=3+\left(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}\right)+\left(\dfrac{x^2}{z^2}+\dfrac{z^2}{16x^2}\right)+\left(\dfrac{y^2}{z^2}+\dfrac{z^2}{16y^2}\right)+\dfrac{15}{16}\left(\dfrac{z^2}{x^2}+\dfrac{z^2}{y^2}\right)\)
Áp dụng BĐT Cauchy ta có
\(A\ge3+2+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{15}{16}\left(\dfrac{z^2}{x^2}+\dfrac{z^2}{y^2}\right)=6+\dfrac{15}{16}\left(\dfrac{z^2}{x^2}+\dfrac{z^2}{y^2}\right)\)
Do \(x+y\le z\Rightarrow\dfrac{x}{z}+\dfrac{y}{z}\le1\) ; Đặt \(u=\dfrac{x}{z}\); \(v=\dfrac{y}{z}\)
\(\Rightarrow\dfrac{z^2}{x^2}+\dfrac{z^2}{y^2}=\dfrac{1}{u^2}+\dfrac{1}{v^2}\ge\dfrac{2}{uv}\ge\dfrac{2}{\dfrac{\left(u+v\right)^2}{4}}\ge\dfrac{2}{\dfrac{1}{4}}=8\)
\(\Rightarrow A\ge6+\dfrac{15}{16}.8=\dfrac{27}{2}\) Vậy minA = \(\dfrac{27}{2}\) khi \(x=y=\dfrac{z}{2}\)
Cho \(\left\{{}\begin{matrix}x,y,z>0\\x\ge max\left\{y,z\right\}\end{matrix}\right.\). Tìm Min của:
\(M=\dfrac{x}{y}+2\sqrt{1+\dfrac{y}{z}}+3\sqrt[3]{1+\dfrac{z}{x}}\)
P/s: Đề trc bị sai nhé!
1)Tìm nghiệm nguyên dương của phương trình: \(\left\{{}\begin{matrix}x+y+z=15\\x^3+y^3+z^3=495\end{matrix}\right.\)
2) Cho a,b,c là 3 số thực không âm, tìm GTLN của biểu thức:
\(M=\left(a+b+c\right)^3+a\left(2bc-1\right)+b\left(2ac-1\right)+c\left(2ab-1\right)\)
3) Giải phương trình: \(\sqrt{x-\sqrt{x^2-1}}=\dfrac{9\sqrt{2}}{4}\left(x-1\right)\sqrt{x-1}\)
4) Cho \(x^2+y^2+z^2=k\left(\forall k>0\right)\) cho trước.
Tìm GTLN của \(A=k\left(xy+yz+xz\right)+\dfrac{1}{2}\left[x^2\left(y-z\right)^2+y^2\left(x-z\right)^2+z^2\left(x-y\right)^2\right]\)
5) Chứng minh rằng:
\(\left(3a+2b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\le\dfrac{45}{2}\)(Bài này quên điều kiện hay gì đó rồi, ae nếu thấy sai thì fix giùm)
6) Cho a là số thay đổi thỏa mãn: \(-1\le a\le1\)
Tìm GTLN của b sao cho bđt sau đúng:
\(2\sqrt{1-a^4}+\left(b-1\right)\left(\sqrt{1+a^2}-\sqrt{1-a^2}\right)+b-4\le0\)
7) Cho a,b,c dương thỏa mãn \(abc=1\). Chứng minh rằng:
\(\sum\dfrac{a}{\sqrt{8b^3+1}}\ge1\)
8) Cho a,b,c là các số thực dương. Chứng minh rằng:
\(\sum\dfrac{a^2-b^2}{\sqrt{b+c}}\ge0\)