Cho 3 số thực dương x, y, z thỏa mãn \(x^3+y^3+z^3=1\). CMR:
\(\frac{x^2}{\sqrt{1-x^2}}+\frac{y^2}{\sqrt{1-y^2}}+\frac{z^2}{\sqrt{1-z^2}}\ge2\)
Cho x, y, z >0 thoả mãn \(x^2+y^2+z^2=1\) . Cmr: \(\frac{x+y+z}{xy+yz+xz}\ge\sqrt{3}+\frac{1}{2\sqrt{3}}\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\)
1. Giải bft ( lập bảng xét dấu nếu cần )
\(\frac{x}{x+1}-2\sqrt{\frac{x+1}{x}}>3\)
2. Chứng minh: \(\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{c^3+a^3+abc}\le\frac{1}{abc}\) ; với a,b,c > 0
3. Cho x,y,z > 0 thỏa mãn x+y+z = 1. Tìm GTLN của biểu thức: P = \(\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\)
Cho các số thực dương x, y, z thỏa mãn \(x+y+z=2020xyz\) . Cmr \(\dfrac{x^2+1+\sqrt{2020x^2+1}}{x}+\dfrac{y^2+1+\sqrt{2020y^2+1}}{y}+\dfrac{z^2+1+\sqrt{2020z^2+1}}{z}\le2020.2021xyz\)
Cho x,y,z>0 thỏa mãn \(x^2+y^2+z^2+2xy=3\left(x+y+z\right)\).Tìm GTNN \(P=x+y+z+\frac{20}{\sqrt{x+z}}+\frac{20}{\sqrt{y+2}}\)
1:Cho x;y>0:\(\frac{2}{x}+\frac{3}{y}=6\).Tìm min P=x+y
2:Cho x;y;z>0:x+y+z\(\le\)1.Chứng minh\(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\ge\sqrt{82}\)
3:cho a;b;c;d>0.Chứng minh\(\frac{a^2}{b^5}+\frac{b^2}{c^5}+\frac{c^2}{d^5}+\frac{d^2}{a^5}\ge\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\)
4:Tìm max,min y=x+\(\sqrt{4-x^2}\)
5:Cho \(a\ge1;b\ge1\).Chứng minh \(a\sqrt{b-1}+b\sqrt{a-1}\le ab\)
6:Chứng minh:\(\left(ab+bc+ca\right)^2\ge3\text{a}bc\left(a+b+c\right)\)
Cho 3 số dương x,y,z có tổng bằng 1.CMR\(\sqrt{\frac{xy}{xy+z}}+\sqrt{\frac{yz}{yz+x}}+\sqrt{\frac{zx}{zx+y}}\le\frac{3}{2}\)
1.Cho tam giác ABC. Chứng minh:
\(\frac{a}{b+c-a}+\frac{b}{c+a-b}+\frac{c}{a+b-c}\ge3\)
2. Cho x, y, z > 0 và xyz = 1. Tìm giá trị nhỏ nhất :
\(P=\frac{x^2\left(y+z\right)}{y\sqrt{y}+2z\sqrt{z}}+\frac{y^2\left(z+x\right)}{z\sqrt{z}+2x\sqrt{x}}+\frac{z^2\left(x+y\right)}{x\sqrt{x}+2y\sqrt{y}}\)
Cho x,y,z>0.cmr:\(\Sigma\sqrt[3]{\frac{x}{y+z}}\ge\frac{3}{\sqrt[3]{2}}\)