Cho x, y, z >0 thoả mãn \(x^2+y^2+z^2=1\) . Cmr: \(\frac{x+y+z}{xy+yz+xz}\ge\sqrt{3}+\frac{1}{2\sqrt{3}}\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\)
Cho ba số x,y,z không âm thỏa mãn x+y+z=3. Chứng minh rằng:
\(\left(x^3+y^3+z^3\right)\left(x^3y^3+y^3z^3+z^3x^3\right)\le36\left(xy+yz+xz\right)\)
Cho x,y,z là các số thực dương thỏa mãn \(x\left(3-xy-xz\right)+y+6z\le5xz\left(y+z\right)\). GTNN của biểu thức P=3x+y+6z
Các bạn giúp mình với
Câu 1: Cho a, b, c >0 và \(a\le b+c\) Tìm giá trị nhỏ nhất của
\(p=\frac{c}{\left(a+b\right)}+\left(b+c\right)\left(\frac{1}{b+2c}+\frac{1}{a+c}\right)\)
Câu 2: Cho x, y, z >0 Tìm giá trị nhỏ nhất
\(p=\frac{1}{3}\left(\frac{xy}{z^2}+\frac{xz}{y^2}+\frac{yz}{x^2}\right)\left[\frac{xyz\left(x+y+z\right)}{x^2y^2+y^2z^2+z^2x^2}\right]^2\)
Câu 3: Cho \(x,y,z\in R\) và \(x^2+y^2+z^2=1\) Tìm giá trị lớn nhất của
\(P=\frac{x^2y^2}{1-xy}+\frac{z^2y^2}{1-zy}+\frac{x^2z^2}{1-xz}\)
cho x,y,z>0 thỏa mãn x+y+z=3. Cmr:
\(\frac{2x^2+y^2+z^2}{4-yz}+\frac{2y^2+x^2+z^2}{4-xz}+\frac{2z^2+x^2+y^2}{4-xy}\ge4xyz\)
cho x,y,z,t thỏa mãn xyzt=1. Cmr:
\(\frac{1}{x^3\left(yz+zt+ty\right)}+\frac{1}{y^3\left(xz+zt+xt\right)}+\frac{1}{z^3\left(xt+yt+yz\right)}+\frac{1}{t^3\left(xy+yz+xz\right)}\ge\frac{3}{4}\)
Cho x,y,z > 0 thỏa mãn xy + yz + xz = 1 . Chứng minh \(\dfrac{27}{4}\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge\left(\sqrt{x+y}+\sqrt{y+z}+\sqrt{x+z}\right)^2\ge6\sqrt{3}\)
Cho x,y,z>0 thỏa mãn \(x^2+y^2+z^2+2xy=3\left(x+y+z\right)\).Tìm GTNN \(P=x+y+z+\frac{20}{\sqrt{x+z}}+\frac{20}{\sqrt{y+2}}\)
1.Cho tam giác ABC. Chứng minh:
\(\frac{a}{b+c-a}+\frac{b}{c+a-b}+\frac{c}{a+b-c}\ge3\)
2. Cho x, y, z > 0 và xyz = 1. Tìm giá trị nhỏ nhất :
\(P=\frac{x^2\left(y+z\right)}{y\sqrt{y}+2z\sqrt{z}}+\frac{y^2\left(z+x\right)}{z\sqrt{z}+2x\sqrt{x}}+\frac{z^2\left(x+y\right)}{x\sqrt{x}+2y\sqrt{y}}\)