Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Khánh Ngọc

Cho ba số x,y,z không âm thỏa mãn x+y+z=3. Chứng minh rằng: 

\(\left(x^3+y^3+z^3\right)\left(x^3y^3+y^3z^3+z^3x^3\right)\le36\left(xy+yz+xz\right)\)

tthnew
19 tháng 1 2021 lúc 13:15

Cách này đòi hỏi sự kiên nhẫn và kinh nghiệm.

Cần chứng minh:

\({\dfrac {4 \left( xy+zx+yz \right) \left( x+y+z \right) ^{7}}{ 243}}- \left( {x}^{3}+{y}^{3}+{z}^{3} \right) \left( {x}^{3}{y}^{3}+{ x}^{3}{z}^{3}+{y}^{3}{z}^{3} \right) \geqslant 0.\quad(1) \) 

Đặt 

\(\text{M}=4\,{z}^{7}+ \left( 757\,x+757\,y \right) {z}^{6}+84\, \left( x+y \right) ^{2}{z}^{5}+140\, \left( x+y \right) ^{3}{z}^{4}\\\quad\quad+ \left( 1598 \,{x}^{4}+4205\,{x}^{3}y+4971\,{x}^{2}{y}^{2}+4205\,x{y}^{3}+1598\,{y} ^{4} \right) {z}^{3}\\\quad \quad+84\, \left( x+y \right) ^{5}{z}^{2}+28\, \left( x +y \right) ^{6}z\geqslant 0 \)

Ta có:

\((1)\Leftrightarrow \dfrac{1}{243}xy\cdot M+{\dfrac { \left( x+y \right) \left( {x}^{2}+11\,xy+{y}^{2} \right) \left( 2\,x-y \right) ^{2} \left( x-2\,y \right) ^{2}xy}{243}}\\\quad\quad+{ \dfrac { \left( x+y \right) z \left( x+y+z \right) \left( {x}^{2}+2\,x y+11\,zx+{y}^{2}+11\,yz+{z}^{2} \right) \left( 2\,y-z+2\,x \right) ^{ 2} \left( y-2\,z+x \right) ^{2}}{243}}\geqslant 0. \)

Đẳng thức xảy ra khi $...$


Các câu hỏi tương tự
Hoàng
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
Nguyễn Hoàng
Xem chi tiết
dam thu a
Xem chi tiết
Phạm Dương Ngọc Nhi
Xem chi tiết
Easylove
Xem chi tiết
Khánh Nguyễn
Xem chi tiết
Neet
Xem chi tiết
Rosie
Xem chi tiết