toán lớp mấy v
1hay 23456789
toán lớp mấy v
1hay 23456789
cho x,y,z>0 thỏa mãn x+y+z=1. Cmr:
\(\frac{3}{xy+yz+xz}+\frac{2}{x^2+y^2+z^2}\ge14\)
cho x,y,z>0 thỏa mãn \(x^2+y^2+z^2=3\) Cmr:
\(\frac{x}{3-yz}+\frac{y}{3-xz}+\frac{z}{3-xy}\le\frac{3}{2}\)
Cho 3 số thực \(x,y,z\) thỏa mãn \(xyz=8\). Chứng minh rằng
\(\frac{x^2}{x^2+2x+4}+\frac{y^2}{y^2+2y+4}+\frac{z^2}{z^2+2z+4}\ge1\)
cho các số x,y,z thỏa mãn 0<x<y<z tìm gtnn của P=\(\frac{x^3z}{y^2\left(xz+y^2\right)}+\frac{y^4}{z^2\left(xz+y^2\right)}+\frac{z^3+15x^3}{x^2z}\)
Cho x, y, z >0 thoả mãn \(x^2+y^2+z^2=1\) . Cmr: \(\frac{x+y+z}{xy+yz+xz}\ge\sqrt{3}+\frac{1}{2\sqrt{3}}\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\)
Các bạn giúp mình với
Câu 1: Cho a, b, c >0 và \(a\le b+c\) Tìm giá trị nhỏ nhất của
\(p=\frac{c}{\left(a+b\right)}+\left(b+c\right)\left(\frac{1}{b+2c}+\frac{1}{a+c}\right)\)
Câu 2: Cho x, y, z >0 Tìm giá trị nhỏ nhất
\(p=\frac{1}{3}\left(\frac{xy}{z^2}+\frac{xz}{y^2}+\frac{yz}{x^2}\right)\left[\frac{xyz\left(x+y+z\right)}{x^2y^2+y^2z^2+z^2x^2}\right]^2\)
Câu 3: Cho \(x,y,z\in R\) và \(x^2+y^2+z^2=1\) Tìm giá trị lớn nhất của
\(P=\frac{x^2y^2}{1-xy}+\frac{z^2y^2}{1-zy}+\frac{x^2z^2}{1-xz}\)
Cho x,y,z > 0 CMR \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{36}{9+x^2y^2+y^2z^2+z^2x^2}\)
Cho 3 số dương x,y,z thỏa mãn x+y+z=1
CMR: \(\frac{3}{xy+z+zx}+\frac{2}{x^2+y^2+z^2}>14\)
CHO x,y,z >0 ,xyz=\(\frac{1}{2}\)
CMR:\(\frac{yz}{x^2\left(y+z\right)}\)+\(\frac{zx}{y^2\left(z+x\right)}\)+\(\frac{xy}{z^2\left(x+y\right)}\) ≥ xy+yz+zx