1, Chứng minh bất đẳng thức:
\(a+\sqrt{a^2-2a+5}+\sqrt{a-1}\ge3\forall a\ge1\)
2, Giải phương trình:
\(x\left(x^2-3x+3\right)+\sqrt{x+3}=3\)
Mong mọi người giúp mình với ạ!! Mình cảm ơn nhiều!!
Giúp mình với ạ . Cảm ơn nhiều .
1)Giải hệ phương trình : \(\left\{{}\begin{matrix}\sqrt{2x-3}-\sqrt{y}\text{=}2x-6\\x^3+y^3+7xy\left(x+y\right)\text{=}8xy.\sqrt{2\left(x^2+y^2\right)}\end{matrix}\right.\)
2) Giải phương trình : \(\dfrac{2\sqrt{x}}{x-1}.x+6+\sqrt{x+2}\text{=}\sqrt{2-x}+3\sqrt{4-x^2}\)
1) đkxđ \(\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\y\ge0\end{matrix}\right.\)
Xét biểu thức \(P=x^3+y^3+7xy\left(x+y\right)\)
\(P=\left(x+y\right)^3+4xy\left(x+y\right)\)
\(P\ge4\sqrt{xy}\left(x+y\right)^2\)
Ta sẽ chứng minh \(4\sqrt{xy}\left(x+y\right)^2\ge8xy\sqrt{2\left(x^2+y^2\right)}\) (*)
Thật vậy, (*)
\(\Leftrightarrow\left(x+y\right)^2\ge2\sqrt{2xy\left(x^2+y^2\right)}\)
\(\Leftrightarrow\left(x+y\right)^4\ge8xy\left(x^2+y^2\right)\)
\(\Leftrightarrow x^4+y^4+6x^2y^2\ge4xy\left(x^2+y^2\right)\) (**)
Áp dụng BĐT Cô-si, ta được:
VT(**) \(=\left(x^2+y^2\right)^2+4x^2y^2\ge4xy\left(x^2+y^2\right)\)\(=\) VP(**)
Vậy (**) đúng \(\Rightarrowđpcm\). Do đó, để đẳng thức xảy ra thì \(x=y\).
Thế vào pt đầu tiên, ta được \(\sqrt{2x-3}-\sqrt{x}=2x-6\)
\(\Leftrightarrow\dfrac{x-3}{\sqrt{2x-3}+\sqrt{x}}=2\left(x-3\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(nhận\right)\\\dfrac{1}{\sqrt{2x-3}+\sqrt{x}}=2\end{matrix}\right.\)
Rõ ràng với \(x\ge\dfrac{3}{2}\) thì \(\dfrac{1}{\sqrt{2x-3}+\sqrt{x}}\le\dfrac{1}{\sqrt{\dfrac{2.3}{2}-3}+\sqrt{\dfrac{3}{2}}}< 2\) nên ta chỉ xét TH \(x=3\Rightarrow y=3\) (nhận)
Vậy hệ pt đã cho có nghiệm duy nhất \(\left(x;y\right)=\left(3;3\right)\)
Bài 1: Giải phương trình sau:
\(\sqrt{x\left(x-1\right)}+\sqrt{x\left(x-2\right)}=2\sqrt{x\left(x-3\right)}\)
Bài 2: Tính giá trị các biểu thức sau:
a) \(\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2-\sqrt{2+\sqrt{3}}}\)
b) \(\sqrt{3-\sqrt{5}}.\left(\sqrt{10}-\sqrt{2}\right).\left(3+\sqrt{5}\right)\)
Bài 3: Tìm giá trị nguyên của x để biểu thức sau có giá trị nguyên:
A = \(\frac{3\sqrt{x}+1}{2-\sqrt{x}}\)
B = \(\frac{2\sqrt{x}-1}{\sqrt{x}+3}\)
Mọi người giúp mình với, ngày kia mình phải nộp rồi:(( Cảm ơn mọi người nhiều
giải phương trình : a) 2x2 -3x + 2 = x\(\sqrt{3x-2}\)
b) (\(\sqrt{x}\)+ 1)2 = 3( 2\(\sqrt{x}\) - 1) - \(\sqrt{4-x}\)
mong mọi người giúp mình câu này nha :>
\(a,PT\Leftrightarrow x^2-3x+2+x^2-x\sqrt{3x-2}=0\left(x\ge\dfrac{2}{3}\right)\\ \Leftrightarrow\left(x^2-3x+2\right)+\dfrac{x\left(x^2-3x+2\right)}{x+\sqrt{3x-2}}=0\\ \Leftrightarrow\left(x^2-3x+2\right)\left(1+\dfrac{x}{x+\sqrt{3x-2}}\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)\left(1+\dfrac{x}{x+\sqrt{3x-2}}\right)=0\)
Vì \(x\ge\dfrac{2}{3}>0\Leftrightarrow1+\dfrac{x}{x+\sqrt{3x-2}}>0\)
Do đó \(x\in\left\{1;2\right\}\)
\(b,ĐK:0\le x\le4\\ PT\Leftrightarrow x+2\sqrt{x}+1=6\sqrt{x}-3-\sqrt{4-x}\\ \Leftrightarrow x-4\sqrt{x}+4=-\sqrt{4-x}\\ \Leftrightarrow\left(\sqrt{x}-2\right)^2=-\sqrt{4-x}\)
Vì \(VT\ge0\ge VP\Leftrightarrow VT=VP=0\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}-2=0\\\sqrt{4-x}=0\end{matrix}\right.\Leftrightarrow x=4\left(tm\right)\)
Vậy PT có nghiệm \(x=4\)
1/ Tìm x, biết:
a) \(\sqrt[3]{2+x}+\sqrt[3]{2-x}=1\)
b) \(2x^3=\left(x-1\right)^3\)
2/ Chứng minh rằng:
\(\left(\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\right)>3^6\)
Giúp mình với nhé, mình thật sự không biết cách làm, mong được mọi người giúp đỡ và cảm ơn, mình sẽ hậu tạ bằng tick!
1) tính
a) (\(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}):\frac{\sqrt{x}}{x-2\sqrt{x}+1}\)với x>0 , x khác 1 b) (\(\left(2+\frac{3+\sqrt{3}}{\sqrt{3}+1}\right).\left(x-\frac{3-\sqrt{3}}{\sqrt{3}-1}\right)\)c) \(\left(\frac{\sqrt{b}}{a-\sqrt{ab}}-\frac{\sqrt{a}}{\sqrt{ab}-b}\right).\left(a\sqrt{b}-b\sqrt{a}\right)\)với a,b>0 a #b2) Giari phương trình
\(\sqrt[3]{x-8}+\sqrt{x+7}+x^3-8x^2-8x-14=0\)
Mong mọi người giúp mình giải bài với ạ
ĐK: \(x\ge-7\)
PT \(\Leftrightarrow\left(\sqrt[3]{x-8}-\left(x-8\right)\right)+\left[\sqrt{x+7}-4\right]+\left(x-9\right)\left(x^2+x+2\right)=0\)
\(\Leftrightarrow\frac{-\left(x-9\right)\left(x-7\right)\left(x-8\right)}{\left(\sqrt[3]{x-8}\right)^2+\left(x-8\right)\sqrt[3]{x-8}+\left(x-8\right)^2}+\frac{x-9}{\sqrt{x+7}+4}+\left(x-9\right)\left(x^2+x+2\right)=0\)
\(\Leftrightarrow\left(x-9\right)\left[x^2+x+2+\frac{1}{\sqrt{x+7}+4}-\frac{\left(x-7\right)\left(x-8\right)}{\left(\sqrt[3]{x-8}\right)^2+\left(x-8\right)\sqrt[3]{x-8}+\left(x-8\right)^2}\right]=0\)
\(\Leftrightarrow x=9\)
P/s:em chả biết đánh giá cái ngoặc to thế nào nữa:((((
giải phương trình:
\(\sqrt{\frac{x+56}{16}+\sqrt{x-8}}=\frac{x}{8}\)
\(4\left(x+1\right)^2=\sqrt{2\left(x^4+x^2+1\right)}\)
Mọi người giúp mình với ạ
Minhg đang cần gấp ạ
Mong mn giúp đỡ, cảm ơn
\(4\left(x+1\right)^2=\sqrt{2\left(x^4+x^2+1\right)}\)
\(\Leftrightarrow16\left(x+1\right)^4=2\left(x^4+x^2+1\right)\)
\(\Leftrightarrow\left(x^2+3x+1\right)\left(7x^2+11x+7\right)=0\)
\(\sqrt{\frac{x+56}{16}+\sqrt{x-8}}=\frac{x}{8}\)
\(\Leftrightarrow2\sqrt{x+56+16\sqrt{x-8}}=x\)
\(\Leftrightarrow2\sqrt{\left(\sqrt{x-8}+8\right)^2}=x\)
\(\Leftrightarrow2\sqrt{x-8}+16=x\)
\(\Leftrightarrow x=24\)
Lmf giúp mình đi ạ
Giải phương trình
\(A=2\left(x+2\right)\sqrt{3x-1}=3x^2-7x-3\)
Rút gọn
\(B=\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\)
a> Giải phương trình với B=2
Giải các phương trình sau
a)\(\sqrt{5x-1}+\sqrt[3]{9-x}=2x^2+3x-1\)
b)\(\sqrt{3-x}+\sqrt{2+x}=x^3+x^2-4x-4+\left|x\right|+\left|x-1\right|\)
MỌI NGƯỜI GIÚP mÌNH NHÁ
Giải phương trình : \(x^2+6x+1=\left(2x+1\right)\sqrt{x^2+2x+3}\)
Mình đang cần gấp mong mọi người giúp đỡ , cảm ơn!