Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thế Giới Tuyết
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 5 2022 lúc 20:20

a; Ta có: 2x=3y

nên x/3=y/2

=>x/21=y/14

Ta có: 5y=7z

nên y/7=z/5

=>y/14=z/10

=>x/21=y/14=z/10

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}=\dfrac{3x-7y+5z}{3\cdot21-7\cdot14+5\cdot10}=\dfrac{30}{15}=2\)

Do đó: x=42; y=28; z=20

b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{\dfrac{11}{6}}=\dfrac{y}{\dfrac{2}{9}}=\dfrac{z}{\dfrac{5}{18}}=\dfrac{-x+y+z}{-\dfrac{11}{6}+\dfrac{2}{9}+\dfrac{5}{18}}=\dfrac{-120}{-\dfrac{4}{3}}=90\)

Do đó: x=165; y=20; z=25

c: x/3=y/4

nên x/15=y/20

y/5=z/7

nên y/20=z/28

=>x/15=y/20=z/28

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}=\dfrac{2x+3y-z}{2\cdot15+3\cdot20-28}=\dfrac{124}{62}=2\)

Do đó: x=30; y=40; z=56

Lục Mão Thiên
Xem chi tiết
Mai Lưu
27 tháng 7 2018 lúc 16:03

ây trung

Mai Lưu
27 tháng 7 2018 lúc 16:23

b. Đặt x-1/2 = y+3/4 = z-5/6  = k

=> x = 2k+1

     y = 4k -3

      z = 6k+5

5z-3x-4y=50 => 5(6k+5)-3(2k+1)-4(4k-3) = 50

                   =>30k+25-6k-3-16k+12 = 50

                   =>(30k-6k-16k)+(25-3+12) = 50

                   =>8k+34 = 50

                   =>8k = 16 

                   =>k = 2

nên x = 2.2+1 = 5

       y = 4.2-3 = 5 

       z = 6.2+5 = 17

Lục Mão Thiên
27 tháng 7 2018 lúc 19:37

Em đây chị!Có gì ko?

YEkezg
Xem chi tiết
nguyen ha my
Xem chi tiết
Nguyễn Nhi
30 tháng 7 2019 lúc 9:35

a) \(\frac{3}{7}x=\frac{8}{13}y=\frac{6}{19}z\) và 2x-y-z =-6

=)\(\frac{x}{\frac{7}{3}}=\frac{y}{\frac{13}{8}}=\frac{z}{\frac{19}{6}}=\frac{2x}{\frac{14}{3}}=\frac{y}{\frac{13}{8}}=\frac{z}{\frac{19}{6}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{2x}{\frac{14}{3}}=\frac{y}{\frac{13}{8}}=\frac{z}{\frac{19}{6}}=\frac{2x-y-z}{\frac{14}{3}-\frac{13}{8}-\frac{19}{6}}=\frac{-6}{\frac{-3}{24}}=48\)

\(\Rightarrow\frac{x}{\frac{7}{3}}=48\Rightarrow x=48\times\frac{7}{3}=112\)

\(\Rightarrow\frac{y}{\frac{13}{8}}=48\Rightarrow y=48\times\frac{13}{8}=78\)

\(\Rightarrow\frac{z}{\frac{19}{6}}=48\Rightarrow z=48\times\frac{19}{6}=152\)

Vậy x=112;y=78;z=152

Đỗ Thanh Mai
Xem chi tiết
Thảo Trần
Xem chi tiết
ST
18 tháng 7 2018 lúc 9:51

Ta có:\(\frac{x}{4}=\frac{2y}{5}=\frac{5z}{6}\Leftrightarrow\frac{x}{4.10}=\frac{2y}{5.10}=\frac{5z}{6.10}\Leftrightarrow\frac{x}{40}=\frac{y}{25}=\frac{z}{12}\)

\(\Leftrightarrow\frac{x^2}{1600}=\frac{y^2}{625}=\frac{z^2}{144}\Leftrightarrow\frac{x^2}{1600}=\frac{3y^2}{1875}=\frac{2z^2}{288}=\frac{x^2-3y^2+2z^2}{1600-1875+288}=\frac{325}{13}=25\)

\(\Rightarrow\hept{\begin{cases}\frac{x^2}{1600}=25\\\frac{y^2}{625}=25\\\frac{z^2}{144}=25\end{cases}\Rightarrow\hept{\begin{cases}x^2=40000\\y^2=15625\\z^2=3600\end{cases}\Rightarrow}\hept{\begin{cases}x=\pm200\\y=\pm125\\z=\pm60\end{cases}}}\)

Không Cần Tên
Xem chi tiết
 Mashiro Shiina
24 tháng 8 2017 lúc 21:25

a)\(\left|2x-3y\right|+\left|2y-4z\right|=0\)

\(\left\{{}\begin{matrix}\left|2x-3y\right|\ge0\forall x;y\\\left|2y-4z\right|\ge0\forall y;z\end{matrix}\right.\) \(\Rightarrow\left|2x-3y\right|+\left|2y-4z\right|\ge0\)

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}\left|2x-3y\right|=0\\\left|2y-4z\right|=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x=3y\\2y=4z\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{2}\\\dfrac{y}{4}=\dfrac{z}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{6}=\dfrac{y}{4}\\\dfrac{y}{4}=\dfrac{z}{2}\end{matrix}\right.\)

\(\Rightarrow\dfrac{x}{6}=\dfrac{y}{4}=\dfrac{z}{2}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{6}=\dfrac{y}{4}=\dfrac{z}{2}=\dfrac{x+y+z}{6+4+2}=\dfrac{7}{12}\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{7}{12}.6=\dfrac{7}{2}\\y=\dfrac{7}{12}.4=\dfrac{7}{3}\\z=\dfrac{7}{12}.2=\dfrac{7}{6}\end{matrix}\right.\)

b)\(\left|x-2\right|+\left|x-3\right|+\left|x-4\right|=0\)

\(\left\{{}\begin{matrix}\left|x-2\right|\ge0\\\left|x-3\right|\ge0\\\left|x-4\right|\ge0\end{matrix}\right.\) \(\Leftrightarrow\left|x-2\right|+\left|x-3\right|+\left|x-4\right|\ge0\)

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}\left|x-2\right|=0\\\left|x-3\right|=0\\\left|x-4\right|=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\x=3\\x=4\end{matrix}\right.\)

\(2\ne3\ne4\) nên \(x\in\varnothing\)

c)

\(\left|x+1\right|+\left|x+2\right|+...+\left|x+8\right|+\left|x+9\right|\)

Với mọi \(x\ge0\) ta có:

\(\left\{{}\begin{matrix}\left|x+1\right|=x+1\\\left|x+2\right|=x+2\\\left|x+8\right|=x+8\\\left|x+9\right|=x+9\end{matrix}\right.\)\(\Leftrightarrow x+1+x+2+...+x+8+x+9=x-1\)

\(\Leftrightarrow9x+90=x-1\)

\(\Leftrightarrow9x=x-89\)

\(\Leftrightarrow-8x=89\)

\(\Leftrightarrow x=\dfrac{89}{-8}\left(KTM\right)\)

Với mọi \(x< 0\) ta có:

\(\left\{{}\begin{matrix}x+1=-x-1\\x+2=-x-2\\x+8=-x-8\\x+9=-x-9\end{matrix}\right.\) \(\Leftrightarrow\left(-x-1\right)+\left(-x-2\right)+...+\left(-x-8\right)+\left(-x-9\right)=x-1\)

\(\Leftrightarrow-9x-90=x-1\)

\(\Leftrightarrow-9x=x+89\)

\(\Leftrightarrow-10x=89\)

\(\Leftrightarrow x=\dfrac{89}{-10}\left(TM\right)\)

d)\(\left|2x-3y\right|+\left|5y-2z\right|+\left|2z-6\right|=0\)

\(\left\{{}\begin{matrix}\left|2x-3y\right|\ge0\\ \left|5y-2z\right|\ge0\\ \left|2z-6\right|\ge0\end{matrix}\right.\) \(\Leftrightarrow\left|2x-3y\right|+\left|5y-2z\right|+\left|2z-6\right|\ge0\)

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}\left|2x-3y\right|=0\\\left|5y-2z\right|=0\\\left|2z-6\right|=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}z=3\\y=\dfrac{6}{5}\\x=\dfrac{9}{5}\end{matrix}\right.\)

Nguyễn Thị Vân Khánh
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Bui Thi Da Ly
15 tháng 5 2017 lúc 15:56

a) x6+x2y5+xy6+x2y5-xy6

= x6+(x2y5+x2y5)+(xy6-xy6)

= x6+2x2y5

b) \(\dfrac{1}{2}\)x2y3-x2y3+3x2y2z2-z4-3x2y2z2

= (\(\dfrac{1}{2}\)x2y3-x2y3)+(3x2y2z2-3x2y2z2)-z4

= -\(\dfrac{1}{2}\)x2y3-z4