Cho tam giác ABC vuông tại A có cạnh AB= 5cm, BC= 13cm. Kẻ AH vuông góc với BC tại H. Tính độ dài các đoạn thẳng AC,AH,BH,CH
Cho tam giác ABC vuông tại A có cạnh AB= 5cm, BC= 13cm. Kẻ AH vuông góc với BC tại H. Tính độ dài các đoạn thẳng AC,AH,BH,CH
Cho tam giác ABC vuông tại A có cạnh AB= 5cm, BC= 13cm. Kẻ AH vuông góc với BC tại H. Tính độ dài các đoạn thẳng AC,AH,BH,CH
Cho tam giác ABC vuông tại A, có AB = 5cm, BC = 13cm. Kẻ AH vuông góc với BC tại H. Tính độ dài các đoạn thẳng: AC, AH, BH, CH.
Áp dụng định lí Pytago tam giác ABC vuông tại A
\(AC=\sqrt{BC^2-AB^2}=12cm\)
Ta có : \(S_{ABC}=\dfrac{1}{2}AB.AC;S_{ABC}=\dfrac{1}{2}AH.BC\Rightarrow AB.AC=AH.BC\)
\(\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{60}{13}cm\)
Theo định lí Pytago tam giác ABH vuông tại H
\(BH=\sqrt{AB^2-AH^2}=\dfrac{25}{13}cm\)
-> CH = BC - BH = \(13-\dfrac{25}{13}=\dfrac{154}{13}\)cm
Cho tam giác ABC vuông tại A, có AB=5cm, BC=13cm. Kẻ AH vuông góc với BC tại H. Tính độ dài các đoạn thẳng: AC,AH,BH,CH?
giúp mình nha
Cho tam giác ABC vuông tại A có AB = 5cm BC = 13cm kẻ AH vuông góc với BC tại H. Tính độ dài AH, CH, BH, AC.
Lời giải:
Áp dụng định lý Pitago:
$AC=\sqrt{BC^2-AB^2}=\sqrt{13^2-5^2}=12$ (cm)
$AH=\frac{2S_{ABC}}{BC}=\frac{AB.AC}{BC}=\frac{5.12}{13}=\frac{60}{13}$ (cm)
$CH=\sqrt{AC^2-AH^2}=\sqrt{12^2-(\frac{60}{13})^2}=\frac{144}{13}$ (cm)
$BH=BC-CH=13-\frac{144}{13}=\frac{25}{13}$ (cm)
Cho tam giác ABC vuông tại A, có AB = 5cm, BC = 13cm. Kẻ AH vuông góc với BC tại H. Tính độ dài các đoạn thẳng: AC, AH, BH, CH.
Áp dụng định lý Pitago:
$AC=\sqrt{BC^2-AB^2}=\sqrt{13^2-5^2}=12$ (cm)
$AH=\frac{2S_{ABC}}{BC}=\frac{AB.AC}{BC}=\frac{5.12}{13}=\frac{60}{13}$ (cm)
$CH=\sqrt{AC^2-AH^2}=\sqrt{12^2-(\frac{60}{13})^2}=\frac{144}{13}$ (cm)
$BH=BC-CH=13-\frac{144}{13}=\frac{25}{13}$ (cm)
- Áp dụng định lý pi ta go vào tam giác ABC vuông tại A ta được :
\(AB^2+AC^2=BC^2\)
\(\Rightarrow AC^2+5^2=13^2\)
\(\Rightarrow AC=12\left(cm\right)\)
- Xét tam giác BHA và tam giác BAC có : \(\left\{{}\begin{matrix}\widehat{BHA}=\widehat{BAC}=90^o\\\widehat{B}\left(chung\right)\end{matrix}\right.\)
=> Hai tam giác trên đồng dạng .
=> \(\dfrac{BH}{AB}=\dfrac{AB}{BC}\)
=> \(BH=\dfrac{AB^2}{BC}=\dfrac{25}{13}\left(cm\right)\)
=> \(CH=BC-BH=\dfrac{144}{13}\left(cm\right)\)
- Áp dụng định lý pi ta go vào tam giác ABH vuông tại H ta được :
\(AH^2+BH^2=AB^2\)
\(\Rightarrow AH=\dfrac{60}{13}\left(cm\right)\)
\(\Delta ABC\)vuông tại A \(\Rightarrow BC^2=AB^2+AC^2\)(đl Py-ta-go)\(\Rightarrow AC^2=BC^2-AB^2\)\(\Rightarrow AC=\sqrt{BC^2-AB^2}\)
\(\Rightarrow AC=\sqrt{13^2-5^2}=12\left(cm\right)\)
Nhận thấy \(\Delta ABC\)vuông tại A nên diện tích \(\Delta ABC\)là \(S_{ABC}=\frac{1}{2}AB.AC\)(1)
\(\Delta ABC\)có đáy BC và đường cao tương ứng AH nên ta có \(S_{ABC}=\frac{1}{2}AH.BC\)(2)
Từ (1) và (2) \(\Rightarrow\frac{1}{2}AB.AC=\frac{1}{2}AH.BC\)\(\Rightarrow AB.AC=AH.BC\)\(\Rightarrow AH=\frac{AB.AC}{BC}\)\(\Rightarrow AH=\frac{5.12}{13}\approx4,615\left(cm\right)\)
Biết được AH thì tính BH và CH khá dễ nhờ xét định lý Py-ta-go trong các tam giác vuông ABH và ACH (đều vuông tại H)
- Áp dụng định lý pi ta go vào tam giác ABC vuông tại A ta được :
\(AB^2+AC^2=BC^2\)
\(\Rightarrow AC^2+5^2=13^2\)
\(\Rightarrow AC=12\left(cm\right)\)
- Xét tam giác BHA và tam giác BAC có : \(\left\{{}\begin{matrix}\widehat{BHA}=\widehat{BAC}=90^o\\\widehat{B}\left(chung\right)\end{matrix}\right.\)
=> Hai tam giác trên đồng dạng .
=> \(\dfrac{BH}{AB}=\dfrac{AB}{BC}\)
=> \(BH=\dfrac{AB^2}{BC}=\dfrac{25}{13}\left(cm\right)\)
=> \(CH=BC-BH=\dfrac{144}{13}\left(cm\right)\)
- Áp dụng định lý pi ta go vào tam giác ABH vuông tại H ta được :
\(AH^2+BH^2=AB^2\)
\(\Rightarrow AH=\dfrac{60}{13}\left(cm\right)\)
Vậy ...
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2=BC^2-AB^2=13^2-5^2=144\)
hay AC=12(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH\cdot13=5\cdot12\)
\(\Leftrightarrow AH\cdot13=60\)
hay \(AH=\dfrac{60}{13}cm\)
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=BH^2+AH^2\)
\(\Leftrightarrow BH^2=AB^2-AH^2=5^2-\left(\dfrac{60}{13}\right)^2=\dfrac{625}{169}\)
hay \(BH=\dfrac{25}{13}cm\)
Ta có: BH+CH=BC(H nằm giữa B và C)
\(\Leftrightarrow CH=BC-BH=13-\dfrac{25}{13}\)
hay \(CH=\dfrac{144}{13}cm\)
Vậy: AC=12cm; \(AH=\dfrac{60}{13}cm\); \(BH=\dfrac{25}{13}cm\); \(CH=\dfrac{144}{13}cm\)
Cho tam giác ABC vuông tại A, có AB<AC, kẻ AH vuông góc với BC (H thuộc BC). So sánh độ dài các đoạn thẳng AH, BH,CH
Cho tam giác ABC vuông tại A có AB = 6cm, AC = 8cm. a) Tính độ dài cạnh BC. b)Kẻ AH vuông góc BC. Biết AH = 4,8cm. Tính độ dài các đoạn BH, CH .