Cho tam giác ABC, M và N lần lượt là trung điểm của AC,AB. Trên tia đối của tia MB lấy điểm E sao cho MB=ME. Trên tia đối của tia NC lấy điểm F sao cho NC=.NF.
a. CE=AB
b.BF=AC
c.AE=BC và AE //BC
d. A là trung điểm của đoạn thẳng f
Cho tam giác ABC có BM và CM là hai đường trung tuyến. Trên tia đối của tia MB lấy điểm E sao cho ME=MB. Trên tia đối của tia NC lấy điểm F sao cho NC=NF.
a/ chứng minh AE=AF
b/ chứng minh A,E,F thẳng hàng
c/ chứng minh EF//BC và EF=2BC
Cho tam giác ABC có BM và CM là hai đường trung tuyến. Trên tia đối của tia MB lấy điểm E sao cho ME=MB. Trên tia đối của tia NC lấy điểm F sao cho NC=NF.
a/ chứng minh AE=AF
b/ chứng minh A,E,F thẳng hàng
c/ chứng minh EF//BC và EF=2BC
a) Xét ΔAME và ΔCMB có
MA=MC(gt)
\(\widehat{AME}=\widehat{CMB}\)(hai góc đối đỉnh)
ME=MB(gt)
Do đó: ΔAME=ΔCMB(c-g-c)
Suy ra: AE=CB(hai cạnh tương ứng)(1)
Xét ΔANF và ΔBNC có
NA=NB(gt)
\(\widehat{ANF}=\widehat{BNC}\)(hai góc đối đỉnh)
NF=NC(gt)
Do đó: ΔANF=ΔBNC(c-g-c)
Suy ra: AF=BC(Hai cạnh tương ứng)(2)
Từ (1) và (2) suy ra AE=AF(đpcm)
b) Ta có: ΔAME=ΔCMB(cmt)
nên \(\widehat{MAE}=\widehat{MCB}\)(hai góc tương ứng)
mà hai góc này là hai góc ở vị trí so le trong
nên AE//BC(Dấu hiệu nhận biết hai đường thẳng song song)
Ta có: ΔANF=ΔBNC(cmt)
nên \(\widehat{AFN}=\widehat{BCN}\)(hai góc tương ứng)
mà hai góc này là hai góc ở vị trí so le trong
nên AF//BC(Dấu hiệu nhận biết hai đường thẳng song song)
Ta có: AE//BC(cmt)
mà AF//BC(cmt)
và AE,AF có điểm chung là A
nên A,E,F thẳng hàng(đpcm)
c) Ta có: AE//BC(cmt)
nên EF//BC
Ta có: AE+AF=EF(A nằm giữa F và E)
nên EF=BC+BC=2BC(đpcm)
Cho tam giác ABC có BM và CM là hai đường trung tuyến. Trên tia đối của tia MB lấy điểm E sao choME=MB. Trên tia đối của tia NC lấy điểm F sao cho NC=NF.
a/ chứng minh AE=AF
b/ chứng minh A,E,F thẳng hàng
c/ chứng minh EF//BC và EF=2BC
cho tam giác ABC có các đường trung tuyến BM và CN trên tia đối tia MB lấy điểm E sao cho ME bằng MB trên tia đối của tia NC lấy điểm F sao cho NF bằng NC cmr
a AE bằng BC AE//BC
b a là trung điểm của EF
c AB Bằng CE AB//CE
d góc FAC và góc FBC bằng nhau
giúp mình với
cho tam giác ABC có AB=AC,Mlà trung điểm của AC,n là trung điểm của AB. Trên tia đối của tia MB lấy điểm E soa cho MB=ME. Trên tia đối của tia NC lấy điểm F sao cho NF=NC. Gọi I là trung điểm của AE, K là trung điểm của BC. C/M 3 điểm I, K, M thẳng hàng
Xét ΔMAE và ΔMCB có:
MA = MC (M là trung điểm của AC)
∠AME = ∠CMB (2 góc đối đỉnh)
ME = MB (gt)
⇒ ΔMAE = ΔMCB (c.g.c)
⇒ AE = BC (2 cạnh tương ứng) (1)
Xét ΔNAF và ΔNBC có:
NA = NB (N là trung điểm của AB)
∠ANF = ∠BNC (2 góc đối đỉnh)
NF = NC (gt)
⇒ ΔNAF = ΔNBC (c.g.c)
⇒ AF = BC (2 cạnh tương ứng) (2)
Từ (1) và (2) ⇒ AE = AF
Ta có: ΔMAE = ΔMCB (cmt)
⇒ ∠MAE = ∠MCB (2 góc tương ứng)
mà 2 góc này ở vị trí so le trong ⇒ AE // BC (3)
Ta có: ΔNAF = ΔNBC (cmt)
⇒ ∠NAF = ∠NBC (2 góc tương ứng)
mà 2 góc này ở vị trí so le trong ⇒ AF // BC (4)
Từ (3) và (4) ⇒ 3 điểm E, A, F thẳng hàng
Câu 2: Cho tam giác ABC, M là trung điểm của cạnh AC. Trên tia đối của tia MB, lấy điểm E sao cho MB = ME
a) CM: AE = BC
b) CM: AE // BC
c) Gọi N là trung điểm của cạnh AB. Trên tia đối tia NC, lấy điểm F sao cho NC = NF. CMR: A là trung điểm của EF.
a) Xét ΔAME và ΔCMB có
AM=CM(M là trung điểm của AC)
\(\widehat{AME}=\widehat{CMB}\)(hai góc đối đỉnh)
ME=MB(gt)
Do đó: ΔAME=ΔCMB(c-g-c)
⇒AE=BC(hai cạnh tương ứng)
b) Ta có: ΔAME=ΔCMB(cmt)
nên \(\widehat{EAM}=\widehat{BCM}\)(hai góc tương ứng)
mà \(\widehat{EAM}\) và \(\widehat{BCM}\) là hai góc ở vị trí so le trong
nên AE//BC(Dấu hiệu nhận biết hai đường thẳng song song)
c) Xét ΔANF và ΔBNC có
AN=BN(N là trung điểm của AB)
\(\widehat{ANF}=\widehat{BNC}\)(hai góc đối đỉnh)
NF=NC(gt)
Do đó: ΔANF=ΔBNC(c-g-c)
⇒AF=BC(hai cạnh tương ứng)
Ta có: ΔANF=ΔBNC(cmt)
nên \(\widehat{AFN}=\widehat{BCN}\)(hai góc tương ứng)
mà \(\widehat{AFN}\) và \(\widehat{BCN}\) là hai góc ở vị trí so le trong
nên AF//BC(Dấu hiệu nhận biết hai đường thẳng song song)
mà AE//BC(cmt)
và AF,AE có điểm chung là A
nên F,A,E thẳng hàng(1)
Ta có: AE=BC(cmt)
mà AF=BC(cmt)
nên AE=AF(2)
Từ (1) và (2) suy ra A là trung điểm của EF(đpcm)
Cho ∆ABC gọi M, N lần lượt là trung điểm của AC, AB. Trên tia đối của tia MB lấy điểm D sao cho MD = MB. Trên tia đối của tia NC lấy điểm E sao cho NE = NC. Chứng minh : a) ∆AMD = ∆CMB b) AE // BC c) A là trung điểm của DE
b: Xét tứ giác AEBC có
N là trung điểm của BA
N là trung điểm của EC
Do đó: AEBC là hình bình hành
Suy ra: AE//BC
Cho tam giác ABC. M,N lần lượt là trung điểm của AC và AB. Trren tia đối MB lấy D sao cho MD=MB. Trên tia đối NC lấy E sao cho NE=NC. Chứng minh:a) tam giác AEN= tam giác BCN. b) tam giác AMD= tam giác CMB. c) AE=AD. d)AD// BC ; AE//BC
Cho tam giác ABC, gọi M là trung điểm của AC, N là trung điểm của AB. Trên tia đối của tia MB, lấy điểm E sao cho ME=MB, trên tia đối của tia NC lấy điểm F sao cho NF=NC:
Chứng minh rằng tam giác MAE = tam giác MCBChứng minh rằng AE=AF1. Xét tam giác MAE và tam giác MCB có:
ME = MB (gt)
MA = MC (gt)
Góc M1 = góc M2 (đối đỉnh)
=> Tam giác MAE = Tam giác MCB (c.g.c)
2. Xét tứ giác AEBC có:
M là trung điểm BE (gt)
M là trung điểm AC (gt)
=> Tứ giác AEBC là hình bình hành
=> AE // BC và AE = BC (1)
Xét tứ giác FABC có:
N là trung điểm BA (gt)
N là trung điểm FC (gt)
=> Tứ giác FABC là hình bình hành
=> FA // BC và FA = BC (2)
Từ (1), (2) => AE = AF