Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Huyy
Xem chi tiết
Huyy
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 7 2021 lúc 22:40

a) Xét ΔAME và ΔCMB có 

MA=MC(gt)

\(\widehat{AME}=\widehat{CMB}\)(hai góc đối đỉnh)

ME=MB(gt)

Do đó: ΔAME=ΔCMB(c-g-c)

Suy ra: AE=CB(hai cạnh tương ứng)(1)

Xét ΔANF và ΔBNC có 

NA=NB(gt)

\(\widehat{ANF}=\widehat{BNC}\)(hai góc đối đỉnh)

NF=NC(gt)

Do đó: ΔANF=ΔBNC(c-g-c)

Suy ra: AF=BC(Hai cạnh tương ứng)(2)

Từ (1) và (2) suy ra AE=AF(đpcm)

Nguyễn Lê Phước Thịnh
13 tháng 7 2021 lúc 22:43

b) Ta có: ΔAME=ΔCMB(cmt)

nên \(\widehat{MAE}=\widehat{MCB}\)(hai góc tương ứng)

mà hai góc này là hai góc ở vị trí so le trong

nên AE//BC(Dấu hiệu nhận biết hai đường thẳng song song)

Ta có: ΔANF=ΔBNC(cmt)

nên \(\widehat{AFN}=\widehat{BCN}\)(hai góc tương ứng)

mà hai góc này là hai góc ở vị trí so le trong

nên AF//BC(Dấu hiệu nhận biết hai đường thẳng song song)

Ta có: AE//BC(cmt)

mà AF//BC(cmt)

và AE,AF có điểm chung là A

nên A,E,F thẳng hàng(đpcm)

Nguyễn Lê Phước Thịnh
13 tháng 7 2021 lúc 22:44

c) Ta có: AE//BC(cmt)

nên EF//BC

Ta có: AE+AF=EF(A nằm giữa F và E)

nên EF=BC+BC=2BC(đpcm)

Huyy
Xem chi tiết
Dung Nguyen
Xem chi tiết
Nguyễn Duy Hưng
Xem chi tiết
Homin
1 tháng 12 2021 lúc 20:31

Xét ΔMAE và ΔMCB có:

         MA = MC (M là trung điểm của AC)

          ∠AME = ∠CMB (2 góc đối đỉnh)

          ME = MB (gt)

⇒ ΔMAE = ΔMCB (c.g.c)

⇒ AE = BC (2 cạnh tương ứng) (1)

Xét ΔNAF và ΔNBC có:

      NA = NB (N là trung điểm của AB)

      ∠ANF = ∠BNC (2 góc đối đỉnh)

       NF = NC (gt)

⇒ ΔNAF = ΔNBC (c.g.c)

⇒ AF = BC (2 cạnh tương ứng) (2)

Từ (1) và (2) ⇒ AE = AF

Ta có: ΔMAE = ΔMCB (cmt)

⇒ ∠MAE = ∠MCB (2 góc tương ứng)

mà 2 góc này ở vị trí so le trong ⇒ AE // BC (3)

Ta có: ΔNAF = ΔNBC (cmt)

⇒ ∠NAF = ∠NBC (2 góc tương ứng)

mà 2 góc này ở vị trí so le trong ⇒ AF // BC (4)

Từ (3) và (4) ⇒ 3 điểm E, A, F thẳng hàng

Athena
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 12 2020 lúc 21:30

a) Xét ΔAME và ΔCMB có 

AM=CM(M là trung điểm của AC)

\(\widehat{AME}=\widehat{CMB}\)(hai góc đối đỉnh)

ME=MB(gt)

Do đó: ΔAME=ΔCMB(c-g-c)

⇒AE=BC(hai cạnh tương ứng)

b) Ta có: ΔAME=ΔCMB(cmt)

nên \(\widehat{EAM}=\widehat{BCM}\)(hai góc tương ứng)

mà \(\widehat{EAM}\) và \(\widehat{BCM}\) là hai góc ở vị trí so le trong

nên AE//BC(Dấu hiệu nhận biết hai đường thẳng song song)

c) Xét ΔANF và ΔBNC có 

AN=BN(N là trung điểm của AB)

\(\widehat{ANF}=\widehat{BNC}\)(hai góc đối đỉnh)

NF=NC(gt)

Do đó: ΔANF=ΔBNC(c-g-c)

⇒AF=BC(hai cạnh tương ứng)

Ta có: ΔANF=ΔBNC(cmt)

nên \(\widehat{AFN}=\widehat{BCN}\)(hai góc tương ứng)

mà \(\widehat{AFN}\) và \(\widehat{BCN}\) là hai góc ở vị trí so le trong

nên AF//BC(Dấu hiệu nhận biết hai đường thẳng song song)

mà AE//BC(cmt)

và AF,AE có điểm chung là A

nên F,A,E thẳng hàng(1)

Ta có: AE=BC(cmt)

mà AF=BC(cmt)

nên AE=AF(2)

Từ (1) và (2) suy ra A là trung điểm của EF(đpcm)

Thị Là Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 12 2021 lúc 21:09

b: Xét tứ giác AEBC có

N là trung điểm của BA

N là trung điểm của EC

Do đó: AEBC là hình bình hành

Suy ra: AE//BC

Trà sữa 09H
Xem chi tiết
Dương Thị Tuyết Nguyên
Xem chi tiết
Vũ Như Mai
23 tháng 12 2016 lúc 18:23

1. Xét tam giác MAE và tam giác MCB có:

     ME = MB (gt)

     MA = MC (gt)

     Góc M1 = góc M2 (đối đỉnh)

=> Tam giác MAE = Tam giác MCB (c.g.c)

2. Xét tứ giác AEBC có:

     M là trung điểm BE (gt)

     M là trung điểm AC (gt)

=> Tứ giác AEBC là hình bình hành 

=> AE // BC và AE = BC (1)
Xét tứ giác FABC có:

   N là trung điểm BA (gt)

   N là trung điểm FC (gt)

=> Tứ giác FABC là hình bình hành

=> FA // BC và FA = BC (2)

Từ (1), (2) => AE = AF

Vũ Như Mai
23 tháng 12 2016 lúc 18:29


A B C M N E F

Hình xấu quá bạn thông cảm.