Tìm số dư của:
38+36+32004:91
số dư của E= 7+7^2+7^3 +.....+7^36 khi chia cho 38 là
Tìm số dư của 1 số cho 91, biết rằng nó chia 7 dư 3 và cho 13 dư 11.
tính nhanh
( 2002 - 79 +15 ) - (-79 +15 )
- (515 - 80+ 91 ) - ( 2003 + 80 + 91 )
4573 + 46 - 4573 + 35 - 16 - 5
32+34+36 + 38 - 10 - 12-14 - 16 - 18
1) ( 2002 - 79 + 15 ) - ( -79 + 15 ) = 2002
2) - (515 - 80+ 91 ) - ( 2003 + 80 + 91 ) = -2700
3) 4573 + 46 - 4573 + 35 - 16 - 5 = 60
4) 32 + 34 + 36 + 38 - 10 - 12 - 14 - 16 - 18 = 70
tìm số dư của phép chia \(38^{10}\) cho 13 và \(38^9\) cho 13
\(38^{10}=\left(39-1\right)^{10}\)
Ta đều biết rằng biểu thức này sẽ có dạng \(39P+1\) (nếu muốn viết đầy đủ thì phải dùng khai triển Newton) và vì \(13|39\) nên biểu thức trên cũng có thể được viết dưới dạng \(13Q+1\) (với \(Q=3P\)). Do đó \(38^{10}\) chia 13 dư 1.
Ta làm tương tự: \(38^9=\left(39-1\right)^9=13R-1\) nên lúc này \(38^9\) chia 13 dư 12.
mik đang từ lớp 7 lên 8 á có cách nào dễ hiểu hơn ko bạn
Tìm số dư của phép chia 38^10 cho 13 và 38^9 cho 13
hằng đẳng thức : \(\left(a+b\right)^n=B\left(a\right)+b^n=B\left(b\right)+a^n\)
áp dụng hằng đẳng thức trên ta có
\(38^{10}=\left(39-1\right)^{10}=B\left(39\right)+\left(-1\right)^{10}=B\left(39\right)+1\)
vì B(39) chia hết cho 13 nên B(39)+1 chia 13 dư 1
tương tự làm câu còn lại nhé
thực hiện phép tính
\(\dfrac{16}{103}\)+(38+\(\dfrac{-16}{103}\))
\(\dfrac{100}{91}\)+310+\(\dfrac{-9}{91}\)
\(\dfrac{-13}{49}\)+(\(\dfrac{-36}{49}\)+41)
\(\dfrac{-10}{71}\):1\(\dfrac{4}{71}\)
\(\dfrac{4}{15}\)+\(\dfrac{8}{15}\):2 -\(\dfrac{1}{18}\).\(\left(-3\right)^2\)
`16/803+38+(-16/803)`
`=16/803-16/803+38`
`=0+38=38`
`100/91+310-9/91`
`=100/91-9/91+310`
`=1+310=311`
\(\dfrac{16}{103}+\left(38+\dfrac{-16}{103}\right)\)
\(=\dfrac{16}{103}+38+\dfrac{-16}{103}\)
\(=\dfrac{16}{103}+\dfrac{-16}{103}+38\)
\(=0+38\)
\(=38\)
Tìm thương và số dư (nếu có) của các phép chia sau:
a) 1092 : 91; b) 2059 : 17
a: 1092:91=12(dư 0)
b: 2059:17=121(dư 2)
a, 1092 : 91 = 12 ( dư 0 )
b, 2059 : 17 = 121 ( dư 2 )
tìm 1 số TN : 7 dư 1, : 13 dư 4. : 91 dư bao nhiêu
1) CM: a) Với mọi số nguyên dương n đều có: A = \(5^n.\left(5^n+1\right)-6^n.\left(3^n+2\right)⋮91\)
b) B = \(36^{38}+41^{33}⋮77\)
2) Số A được chia thành 3 số tỉ lệ theo \(\frac{2}{5}:\frac{3}{4}:\frac{1}{6}\). Biết rằng tổng các bình phương của ba số đó bằng 24309. Tìm số A
Tìm thương và số dư (nếu có) của các phép chia sau:
a) 1 092 : 91
b) 2 059 : 17.
a) 1 092 : 91 = 12
b) 2 059 : 17 = 121 (dư 2)