Chứng minh rằng với mọi số nguyên n thì phân thức :
n^3 - n / 6 có giá trị nguyên
Chứng minh rằng
a) n^3-n chia hết cho 6 với mọi số nghuyên n
b) biểu thức n/3+n^2/2+n^3/6 luôn có giá trị nguyên với mọi giá trị n nguyên
\(n^3-n=n\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)\)
Ba số trên là ba số tự nhiên liên tiếp nên chia hết cho 6 ( Ví dụ : 1.2.3= 6 chia hết cho 6 )
\(\Rightarrow n^3-n⋮6\)
n^3 - n
= n( n^2 - 1 )
Xét 2 trường hợp :
1 . n là số chẵn
ð n( n^2 – 1 ) chia hết cho 2
2 . n là số lẽ
=> n^2 – 1 là số chẵn
=> n( n^2 – 1 ) chia hết cho 2
Vậy n^3 – n chia hết cho 2
Có n^3 – n = n( n^2 – 1 ) = n( n + 1 )( n – 1 )
Vì n , n + 1 và n – 1 là 3 số tự nhiên liên tiếp nên chia hết cho 3
=> n^3 – n chia hết cho 3
Vì n^3 – n cùng chia hết cho cả 3 và 2
=> n^3 – n chia hết cho 6
n/3 + n^2/2 + n^3/6
= 2n/6 + 3n^2/6 + n^3/6
= 2n + 3n^2 + n^3 / 6
= ( 2n + 2n^2 ) + ( n^2 + n^3 ) / 6 ( Tách 3n^2 = n^2 + 2n^2 )
= 2n( n + 1 ) + n^2( n + 1 ) / 6
= ( n + 1 )( 2n + n^2 ) / 6
= n( n + 1 )( n + 2 ) / 6
Vì n , n+1 và n+2 là 3 số tự nhiên liên tiếp
=> n( n + 1 )( n + 2 ) chia hết cho 3
Trong 3 số nguyên liên tiếp luôn tồn lại 1 số chẵn
=> n( n + 1 )( n + 2 ) chia hết cho 2
Vì n( n + 1 )( n + 2 ) cùng chia hết cho 2 và 3
=> n( n + 1 )( n + 2 ) chia hết cho 6
=> n( n + 1 )( n + 2 ) = 6k ( k\(\in Z\))
Vậy n(n + 1 )( n + 2 )/6 = 6k/6 = k hay chúng luôn nguyên .
Chứng minh rằng với mọi n thuộc số nguyên thì biểu thức n\3 + n2\2 +n3\6 luôn có giá trị nguyên.
\(A=\frac{n}{3}+\frac{n^2}{2}+\frac{n^3}{6}=\frac{2n+3n^2+n^3}{6}=\frac{\left(n^3+n^2\right)+\left(2n^2+2n\right)}{6}\)
\(=\frac{n^2\left(n+1\right)+2n\left(n+1\right)}{6}=\frac{n\left(n+1\right)\left(n+2\right)}{6}\)
Vì \(n\left(n+1\right)\left(n+2\right)\) là tích hai số nguyên liên tiếp nên \(n\left(n+1\right)\left(n+2\right)⋮\)2 và 3
Mà (2;3) = 1 \(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\)
Hay \(\frac{n\left(n+1\right)\left(n+2\right)}{6}\) là số nguyên
Vậy \(A\) luôn có gt là số nguyên
iam do not know
chứng minh với mọi số nguyên n thì (n/3+n^2/2+n^3/6) có giá trị nguyên
Chứng tỏ rằng với mọi giá trị n là số nguyên thì phân số (3n+10):(n+3) là phân số tối giản. Tìm giá trị nguyên n để phân số đó cs giá trị nguyên (héppp mii mình vộiii)
Gọi d=ƯCLN(3n+10;n+3)
=>3n+10-3n-9 chiahết cho d
=>1 chia hết cho d
=>d=1
=>PSTG
chứng minh rằng với mọi giá trị nguyên của n biểu thức sau luôn có giá trị nguyên A= \(\frac{n^3+3n^2+2n}{6}\)
làm giúp mình với
a) Chứng minh rằng với mọi số nguyên x,y là số nguyên thì giá trị của đa thức:
A= (x+y)(x+2y)(x+3y)(x+4y)+y4 là một số chính phương.
b) Chứng minh rằng n3 +3n2 +2n chia hết cho 6 với mọi số nguyên.
A=(x+y)(x+2y)(x+3y)(x+4y)+y4
A=(x+y)(x+4y).(x+2y)(x+3y)+y4
A=(x2+5xy+4y2)(x2+5xy+6y2)+y4
A=(x2+5xy+ 5y2 - y2 )(x2+5xy+5y2+y2)+y4
A=(x2+5xy+5y2)2-y4+y4
A=(x2+5xy+5y2)2
Do x,y,Z nen x2+5xy+5y2 Z
A là số chính phương
a) Ta có: A= (x+y)(x+2y)(x+3y)(x+4y)+y4
= (x2 + 5xy + 4y2)( x2 + 5xy + 6y2) + y2
Đặt x2 + 5xy + 5y2 = h ( h thuộc Z):
A = ( h - y2)( h + y2) + y2 = h2 – y2 + y2 = h2 = (x2 + 5xy + 5y2)2
Vì x, y, z thuộc Z nên x2 thuộc Z, 5xy thuộc Z, 5y2 thuộc Z . Suy ra x2 + 5xy + 5y2 thuộc Z
Vậy A là số chính phương.
Cho B = (n^2 − 1)(n + 3)(n + 5) + 16. Chứng minh rằng với mọi số nguyên n thì B luôn có giá trị là số chính phương.
\(B=\left(n-1\right)\left(n+5\right)\left(n+1\right)\left(n+3\right)+16\)
\(=\left(n^2+4n-5\right)\left(n^2+4n+3\right)+16\)
\(=\left(n^2+4n\right)^2-2\left(n^2+4n\right)-15+16\)
\(=\left(n^2+4n-1\right)^2\) là số chính phương
\(B=\left(n^2-1\right)\left(n+3\right)\left(n+5\right)+16\\ \Rightarrow B=\left(n-1\right)\left(n+1\right)\left(n+3\right)\left(n+5\right)+16\\ \Rightarrow B=\left[\left(n-1\right)\left(n+5\right)\right]\left[\left(n+1\right)\left(n+3\right)\right]+16\\ \Rightarrow B=\left(n^2+4n-5\right)\left(n^2+4n+3\right)+16\\ \Rightarrow B=\left(n^2+4n-5\right)\left(n^2+4n-5+8\right)+16\\ \Rightarrow B=\left(n^2+4n-5\right)^2+8\left(n^2+4n-5\right)+16\\ \Rightarrow B=\left(n^2+4n-5+4\right)^2\\ \Rightarrow B=\left(n^2+4n-1\right)^2\)
Vậy B là số chính phương với mọi số nguyên n
Chứng minh rằng với mọi số nguyên $n$
phân số dạng $\frac{n-2}{2.n+3}$ là phân số tối giản
cho phân số $B$=$\frac{n+1}{n+2}$ ($nez$)
$a,$tìm điều kiện để $B$ là phân số
$b,$tìm các số nguyên $n$ để $B$ có giá trị nguyên
Chứng minh rằng với mọi số nguyên $n$
phân số dạng $\frac{n-2}{2.n+3}$ là phân số tối giản
cho phân số $B$=$\frac{n+1}{n+2}$ ($nez$)
$a,$tìm điều kiện để $B$ là phân số
$b,$tìm các số nguyên $n$ để $B$ có giá trị nguyên