tìm x biết x^3+5x^2+8x+4=0
Tìm x,biết
a) x^3-5x^2+8x-4=0
b)x^5-x^3-x^2+1=0
x^5 -x^3 -x^2 +1=0
x^3(x^2 -1 )-(x^2-1)=0
(x-1)(x^2+x+1)(x-1)(x+1)=0
(x-1)^2(x+1)(x^2+x+1)=0
=> x=1;x=-1
x^3- 5x^2+ 8x- 4= x^3- x^2- 4x^2+ 4x+ 4x- 4
= x^2(x-1)- 4x(x-1)+4(x-1)
= (x-1)(x^2-4x+4)
= (x-1)(x-1)^2
=(x-1)^3
Tìm x biết
a) 4(x-1)×(x+5)-(x+2)×(x+5)=3×(x-1)×(x+2)
b) x^3-5x^2+8x-4=0\
Tìm x, biết
1)x3-5x2+8x-4=0
2)2x3-x2+3x+6=0
1,
<=> \(\left(x-1\right)\left(x-2\right)^2=0\)
=> x=1 hoặc x=2
2,
<=>\(\left(x+1\right)\left(2x^2-3x+6\right)\)=0
=> x=-1
1.
<=> ( x -1 ) ( x - 2 ) 2 = 0
=> x = 1 hoặc x = 2
2.
<=> ( x + 1 ) ( 2x2 - 3x + 6 ) = 0
=> x = -1
Tìm x,biết
a) ( x+2)×(x+3)-(x -2)×(x+5)=0
b) (2x+3)×(x-4)+(x-5)×(x-2)=(3x-5)×(x-4)
c) (8-5x)×(x+2)+4(x-2)×(x+1)+2(x-2)×(x+2)=0
d) (8x-3)×(3x+2)-(4x+7)×(x+4)=(2x+1)×(5x-1)-33
Tìm x biết.
a) 4x^2 - 49 = 0 b) x^2 + 36 = 12x
c) 1/16x^2 - x + 4 = 0 d) x^3 -3√3x2 + 9x - 3√3 = 0
e) (x - 2)^2 - 16 = 0 f) x^2 - 5x - 14 = 0
g) 8x(x - 3) + x - 3 = 0
a, 4x2 - 49 = 0
⇔⇔ (2x)2 - 72 = 0
⇔⇔ (2x - 7)(2x + 7) = 0
⇔{2x−7=02x+7=0⇔⎧⎪ ⎪⎨⎪ ⎪⎩x=72x=−72⇔{2x−7=02x+7=0⇔{x=72x=−72
b, x2 + 36 = 12x
⇔⇔ x2 + 36 - 12x = 0
⇔⇔ x2 - 2.x.6 + 62 = 0
⇔⇔ (x - 6)2 = 0
⇔⇔ x = 6
e, (x - 2)2 - 16 = 0
⇔⇔ (x - 2)2 - 42 = 0
⇔⇔ (x - 2 - 4)(x - 2 + 4) = 0
⇔⇔ (x - 6)(x + 2) = 0
⇔{x−6=0x+2=0⇔{x=6x=−2⇔{x−6=0x+2=0⇔{x=6x=−2
f, x2 - 5x -14 = 0
⇔⇔ x2 + 2x - 7x -14 = 0
⇔⇔ x(x + 2) - 7(x + 2) = 0
⇔⇔ (x + 2)(x - 7) = 0
⇔{x+2=0x−7=0⇔{x=−2x=7
a,\(4x^2-49=0\)
\(\Leftrightarrow\left(2x\right)^2-7^2=0\)
\(\Leftrightarrow\left(2x-7\right)\left(2x+7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x-7=0\\2x+7=0\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=7\\2x=-7\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{7}{2}\\x=-\frac{7}{2}\end{cases}}}\)
b.\(x^2+36=12x\)
\(\Leftrightarrow x^2-12x+36=0\)
\(\Leftrightarrow\left(x-6\right)^2=0\)
\(\Leftrightarrow x-6=0\Leftrightarrow x=6\)
c.\(\frac{1}{16x^2}-x+4=0\)
\(\Leftrightarrow\left(\frac{1}{4x}\right)^2-2.\frac{1}{4x}.2+2^2=0\)
\(\Leftrightarrow\left(\frac{1}{4x}-2\right)^2=0\)
........
Tìm x, biết:
6) x^3 - 2x^2 + 2x = 0
7) 2x^3 - 5x^2 + 8x - 5 = 0
bài 1 :tìm x,y biết
a) (5x+1)=\(\dfrac{36}{49}\) b) (x-2/9) = (2/3) c)(8x-1) 2x+1= 5^2 x+1
d) (x-3,5)^x+(y - 1/10)^4=0
`(5x+1)=36/49`
`<=> 5x = 36/49-1`
`<=> 5x = -13/49`.
`<=> x = -13/245.`
Vậy `x = -13/245`.
`b, x-2/9 = 2/3`.
`<=> x = 2/3 + 2/9`
`<=> x = 8/9`.
Vậy `x = 8/9`.
c: (8x-1)^(2x+1)=5^(2x+1)
=>8x-1=5
=>8x=6
=>x=3/4
d: Sửa đề: (x-3,5)^2+(y-1/10)^4=0
=>x-3,5=0 và y-0,1=0
=>x=3,5 và y=0,1
tìm x: a)x^4-2x^3+5x^2-10x=0
b)(3x+5)^2=(2x-2)^2
. c)x^3–2x^2+x=0
. d)x^2(x-1)-4x^2+8x-4=0
\(a,x^4-2x^3+5x^2-10x=0\\ \Leftrightarrow x^3\left(x-2\right)+5x\left(x-2\right)=0\\ \Leftrightarrow x\left(x^2+5\right)\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x^2+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x\in\varnothing\left(x^2+5>0\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
\(b,\left(3x+5\right)^2=\left(2x-2\right)^2\\ \Leftrightarrow\left(3x+5\right)^2-\left(2x-2\right)^2=0\\ \Leftrightarrow\left(3x+5+2x-2\right)\left(3x+5-2x+2\right)=0\\ \Leftrightarrow\left(5x+3\right)\left(x+7\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{5}\\x=-7\end{matrix}\right.\)
\(c,x^3-2x^2+x=0\\ \Leftrightarrow x\left(x-1\right)^2=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
\(d,x^2\left(x-1\right)-4x^2+8x-4=0\\ \Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\\ \Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
a) \(x^4-2x^3+5x^2-10x=0\\ \Rightarrow\left(x^4-2x^3\right)+\left(5x^2-10x\right)=0\\ \Rightarrow x^3\left(x-2\right)+5x\left(x-2\right)=0\\ \Rightarrow\left(x^3+5x\right)\left(x-2\right)=0\\ \Rightarrow x\left(x^2+5\right)\left(x-2\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x^2+5=0\\x-2=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=\pm\sqrt{5}\\x=2\end{matrix}\right.\)
Vậy \(x=\left\{-\sqrt{5};0;\sqrt{5};2\right\}\)
b) \(\left(3x+5\right)^2=\left(2x-2\right)^2\\ \Rightarrow\left[{}\begin{matrix}3x+5=2x-2\\3x+5=-2x+2\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-7\\x=-\dfrac{3}{5}\end{matrix}\right.\)
c) \(x^3-2x^2+x=0\\ \Rightarrow x\left(x^2-2x+1\right)=0\\ \Rightarrow x\left(x-1\right)^2=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\\left(x-1\right)^2=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
vậy ...
d) \(x^2\left(x-1\right)-4x^2+8x-4=0\\ x^2\left(x-1\right)-\left(4x^2-8x+4\right)=0\\ x^2\left(x-1\right)-\left(2x-2\right)^2=0\\ \Rightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\\ \Rightarrow\left(x-1\right)\left[x^2-4\left(x-1\right)\right]=0\\ \Rightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\\ \Rightarrow\left(x-1\right)\left(x-2\right)^2=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\\left(x-2\right)^2=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
a: Ta có: \(x^4-2x^3+5x^2-10x=0\)
\(\Leftrightarrow x\left(x^3-2x^2+5x-10\right)=0\)
\(\Leftrightarrow x\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
b:Ta có: \(\left(3x+5\right)^2=\left(2x-2\right)^2\)
\(\Leftrightarrow\left(3x+5\right)^2-\left(2x-2\right)^2=0\)
\(\Leftrightarrow\left(3x+5-2x+2\right)\left(3x+5+2x-2\right)=0\)
\(\Leftrightarrow\left(x+7\right)\left(5x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-7\\x=-\dfrac{3}{5}\end{matrix}\right.\)
tìm x biết
a) 8x-75=5x+21
b) 9x+25=-(2x-58)
c) (5-x).(x+2)=0
d) 3./x+3/ -4=-7-(-18)
\(a,8x-75=5x+21\)
\(8x-5x=21+75\)
\(3x=96\)
\(x=32\)
\(b,9x+25=-\left(2x-58\right)\)
\(9x+25=-2x+58\)
\(9x+2x=58-25\)
\(11x=33\)
\(x=3\)
\(c,\left(5-x\right).\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}5-x=0\\x+2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=5\\x=-2\end{cases}}}\)
a) \(8x-75=5x+21\)
\(8x-5x=21+75\)
\(3x=96\)
\(x=32\)
vậy \(x=32\)
b) \(9x+25=-\left(2x-58\right)\)
\(9x+25=-2x+58\)
\(9x+2x=58-25\)
\(11x=33\)
\(x=3\)
vậy \(x=3\)
c) \(\left(5-x\right)\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}5-x=0\\x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=5\\x=-2\end{cases}}\)
vậy....
d) \(3.\left|x+3\right|-4=-7-\left(-18\right)\)
\(3.\left|x+3\right|-4=-7+18\)
\(3.\left|x+3\right|=11+4\)
\(3.\left|x+3\right|=15\)
\(\left|x+3\right|=5\)
\(\Rightarrow\orbr{\begin{cases}x+3=5\\x+3=-5\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=-8\end{cases}}\)
vậy..