Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngô Duy Phúc
Xem chi tiết
Trần Hữu Ngọc Minh
14 tháng 12 2017 lúc 18:40

2)\(\frac{x+y}{xy}\ge\frac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)

theo yêu cầu của bạn thì đến đâ mk làm theo cách này

ÁP Dụng cô si ta có:\(x+y\ge2\sqrt{xy}\)\(\Rightarrow\left(x+y\right)^2\ge4xy\)(luôn đúng)\(\Rightarrowđpcm\)

cách 2

\(\left(x+y\right)^2\ge4xy\Leftrightarrow x^2+2xy+y^2\ge4xy\)

\(\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow\left(x-y\right)^2\ge0\)(luôn đúng)

\(\Rightarrowđpcm\)

ank viet
Xem chi tiết
Lightning Farron
26 tháng 12 2016 lúc 17:42

Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\) ta có:

\(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z}\)

\(\ge\frac{9}{x+y+y+z+x+z}=\frac{9}{2\left(x+y+z\right)}\)

Dấu "=" xảy ra khi \(x=y=z\)

didudsui
Xem chi tiết
nguyễn hoàng sơn
26 tháng 10 2019 lúc 23:26

vote cho mk đi vote lại cho ok

Khách vãng lai đã xóa
didudsui
26 tháng 10 2019 lúc 23:31

help me please

Khách vãng lai đã xóa
tth_new
27 tháng 10 2019 lúc 8:30

a)BĐT \(\Leftrightarrow\left(y^2+z^2+1\right)x^2-2yz.x+y^2+y^2z^2+z^2\ge0\)

Ta có: Δ_x = -4 (y^4 z^2 + y^4 + y^2 z^4 + 2 y^2 z^2 + y^2 + z^4 + z^2) \(\le0\)( tag ảnh vào cho nó nhanh, ko biết olm có hiển thị hay ko!)

Vậy ta có đpcm. Đẳng thức xảy ra khi x = y = z = 0

b) Hình như sai đề ạ!

P/s: Em ko chắc cho lắm!

Khách vãng lai đã xóa
Vinh Nguyễn Thành
Xem chi tiết
Nguyễn Thành Trương
29 tháng 4 2019 lúc 15:20

Hỏi đáp Toán

chử mai
Xem chi tiết
Nguyễn Anh Quân
30 tháng 12 2017 lúc 20:57

Đề phải cho x,y,z ; a,b,c >0 chứ bạn ơi

Xét A = (a^2/x + b^2/y + c^2/z) . (x+y+z) = [(a/\(\sqrt{x}\))^2+(b/\(\sqrt{y}\))^2+(c/\(\sqrt{z}\))^2 . (\(\sqrt{x}\)2 + \(\sqrt{y}\)2 + \(\sqrt{z}\)2)

Áp dụng bđt bunhiacopxki ta có : 

A >= (a/\(\sqrt{x}\).\(\sqrt{x}\)+b/\(\sqrt{y}\).\(\sqrt{y}\)+c/\(\sqrt{z}\).\(\sqrt{z}\))^2 = (a+b+c)^2

=> a^2/x + b^2/y + c^2/z >= (a+b+c)^2/x+y+z

=> ĐPCM

k mk nha

Nguyễn Anh Quân
30 tháng 12 2017 lúc 21:13

Nhầm chỗ \(\sqrt{z}\)2 nha . đó là \(\sqrt{z}\)2

k mk nha

zZz Cool Kid_new zZz
4 tháng 1 2019 lúc 22:22

đây là BĐT Cauchy-Schwarz nha.

nga thanh
Xem chi tiết
✿✿❑ĐạT̐®ŋɢย❐✿✿
29 tháng 12 2019 lúc 12:14

BĐT \(\Leftrightarrow\frac{y}{x}+\frac{y}{z}+\frac{x}{y}+\frac{z}{y}\le1+\frac{x}{z}+\frac{z}{x}+1\)

Xét BĐT tổng quát : \(\frac{a}{b}+\frac{b}{a}\ge2\)

\(\Leftrightarrow\frac{a^2+b^2-2ab}{ab}\ge0\Leftrightarrow\frac{\left(a-b\right)^2}{ab}\ge0\) ( luôn đúng )

Nên \(\frac{a}{b}+\frac{b}{a}\ge2\)

Khi đó ta có BĐT trên đúng.

@ Em không chắc vì em mới đọc cái này ạ, có gì sai mn chỉ ạ !

Khách vãng lai đã xóa
Tui là Hacker
Xem chi tiết
Lee Thuu Hà
Xem chi tiết
Diệu Huyền
4 tháng 12 2019 lúc 23:43

Violympic toán 9

Khách vãng lai đã xóa
Đình Khang
Xem chi tiết
Akai Haruma
16 tháng 1 2020 lúc 10:27

Lời giải:
Đặt $\frac{x+y}{x-y}=a; \frac{y+z}{y-z}=b; \frac{z+x}{z-x}=c$

Bằng phép biến đổi tương đương cơ bản, ta chỉ ra được:

$ab+bc+ac=-1$

$\Leftrightarrow (a+b+c)^2-(a^2+b^2+c^2)=-2$

$\Leftrightarrow a^2+b^2+c^2=(a+b+c)^2+2\geq 2$

Ta sẽ đi chứng minh $a^{2020}+b^{2020}+c^{2020}>\frac{2^{1010}{3^{1009}}$
-------------------------------------------

Áp dụng BĐT AM-GM cho các số không âm:

\(\frac{a^{2020}}{a^{2020}+b^{2020}+c^{2020}}+\frac{1}{3}+\frac{1}{3}+....+\frac{1}{3}\geq 1010\sqrt[1010]{\frac{a^{2020}}{(a^{2020}+b^{2020}+c^{2020}).3^{1009}}}\)

\(\frac{b^{2020}}{a^{2020}+b^{2020}+c^{2020}}+\frac{1}{3}+\frac{1}{3}+....+\frac{1}{3}\geq 1010\sqrt[1010]{\frac{b^{2020}}{(a^{2020}+b^{2020}+c^{2020}).3^{1009}}}\)

\(\frac{c^{2020}}{a^{2020}+b^{2020}+c^{2020}}+\frac{1}{3}+\frac{1}{3}+....+\frac{1}{3}\geq 1010\sqrt[1010]{\frac{c^{2020}}{(a^{2020}+b^{2020}+c^{2020}).3^{1009}}}\)

Cộng theo vế và thu gọn: $a^2+b^2+c^2\leq \sqrt[1010]{(a^{2020}+b^{2020}+c^{2020}).3^{1009}}$

$\Rightarrow a^{2020}+b^{2020}+c^{2020}\geq \frac{(a^2+b^2+c^2)^{1010}}{3^{1009}}\geq \frac{2^{1010}}{3^{1009}}$ do $a^2+b^2+c^2\geq 2$

Dấu "=" xảy ra khi $a=b=c$ và $a^2+b^2+c^2=2$. Điều này không được vì $x,y,z$ đôi một khác nhau làm $a,b,c$ đôi một khác nhau

Ta có đpcm.

Khách vãng lai đã xóa
Đình Khang
15 tháng 1 2020 lúc 23:02

Akai Haruma dạ giúp em bài này vs ạ !!!

Khách vãng lai đã xóa