Cho hàm số y=f(x) thỏa mãn 2.f(m)+f(3-m)=m-2 với mọi m thuộc R
Tính giá trị của f(3)
cho hàm số y=f(x) thỏa mãn f(x)-x.f(-x)=x+1 với mọi x thuộc Rtính f(1)
1. Cho hàm số \(y=x^3-3mx^2+3\left(2m-1\right)x+1\) . Với giá trị nào của m thì \(f'\left(x\right)-6x>0\) với mọi x>2
A. m > 1/2 B. m < -1/2 C. m >1 D. m ≤ 0
2. Cho hai hàm số f(x) và g(x) đều có đạo hàm trên R và thỏa mãn :
\(f^3\left(2-x\right)-2f^2\left(2+3x\right)+x^2g\left(x\right)+36x=0\) với mọi x thuộc R.
Tính \(A=3f\left(2\right)+4f'\left(2\right)\)
3. Biết hàm số f(x) - f(2x) có đạo hàm bằng 18 tại x=1 và đạo hàm bằng 2000 tại x=2. Tính đạo hàm của hàm số f(x) - f(4x) tại x=1
1.
\(f'\left(x\right)=3x^2-6mx+3\left(2m-1\right)\)
\(f'\left(x\right)-6x=3x^2-3.2\left(m+1\right)x+3\left(2m-1\right)>0\)
\(\Leftrightarrow x^2-2\left(m+1\right)x+2m-1>0\)
\(\Leftrightarrow x^2-2x-1>2m\left(x-1\right)\)
Do \(x>2\Rightarrow x-1>0\) nên BPT tương đương:
\(\dfrac{x^2-2x-1}{x-1}>2m\Leftrightarrow\dfrac{\left(x-1\right)^2-2}{x-1}>2m\)
Đặt \(t=x-1>1\Rightarrow\dfrac{t^2-2}{t}>2m\Leftrightarrow f\left(t\right)=t-\dfrac{2}{t}>2m\)
Xét hàm \(f\left(t\right)\) với \(t>1\) : \(f'\left(t\right)=1+\dfrac{2}{t^2}>0\) ; \(\forall t\Rightarrow f\left(t\right)\) đồng biến
\(\Rightarrow f\left(t\right)>f\left(1\right)=-1\Rightarrow\) BPT đúng với mọi \(t>1\) khi \(2m< -1\Rightarrow m< -\dfrac{1}{2}\)
2.
Thay \(x=0\) vào giả thiết:
\(f^3\left(2\right)-2f^2\left(2\right)=0\Leftrightarrow f^2\left(2\right)\left[f\left(2\right)-2\right]=0\Rightarrow\left[{}\begin{matrix}f\left(2\right)=0\\f\left(2\right)=2\end{matrix}\right.\)
Đạo hàm 2 vế giả thiết:
\(-3f^2\left(2-x\right).f'\left(2-x\right)-12f\left(2+3x\right).f'\left(2+3x\right)+2x.g\left(x\right)+x^2.g'\left(x\right)+36=0\) (1)
Thế \(x=0\) vào (1) ta được:
\(-3f^2\left(2\right).f'\left(2\right)-12f\left(2\right).f'\left(2\right)+36=0\)
\(\Leftrightarrow f^2\left(2\right).f'\left(2\right)+4f\left(2\right).f'\left(2\right)-12=0\) (2)
Với \(f\left(2\right)=0\) thế vào (2) \(\Rightarrow-12=0\) ko thỏa mãn (loại)
\(\Rightarrow f\left(2\right)=2\)
Thế vào (2):
\(4f'\left(2\right)+8f'\left(2\right)-12=0\Leftrightarrow f'\left(2\right)=1\)
\(\Rightarrow A=3.2+4.1\)
3.
Đặt \(g\left(x\right)=f\left(x\right)-f\left(2x\right)\)
\(\Rightarrow g'\left(x\right)=f'\left(x\right)-2f'\left(2x\right)\)
Thay \(x=1\Rightarrow18=f'\left(1\right)-2f'\left(2\right)\) (1)
Thay \(x=2\Rightarrow2000=f'\left(2\right)-2f'\left(4\right)\Rightarrow4000=2f'\left(2\right)-4f'\left(4\right)\) (2)
Cộng vế (1) và (2):
\(f'\left(1\right)-4f'\left(4\right)=4018\)
Đặt \(h\left(x\right)=f\left(x\right)-f\left(4x\right)\Rightarrow h'\left(x\right)=f'\left(x\right)-4f'\left(4x\right)\)
Thay \(x=1\Rightarrow h'\left(1\right)=f'\left(1\right)-4f'\left(4\right)=4018\)
Cho hàm số y=f(x) liên tục, không âm trên R thỏa mãn f ( x ) . f ' ( x ) = 2 x f ( x ) 2 + 1 và f(0)=0. Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y=f(x) trên đoạn [1;3] lần lượt là:
A. M=20;m=2
B. M = 4 11 ; m = 3
C. M = 20 ; m = 2
D. M = 3 11 ; m = 3
Cho hàm số f(x) thỏa mãn f ( 2 ) = - 2 9 và f ' ( x ) = 2 x [ f ( x ) ] 2 với mọi giá trị x thuộc R Giá trị của f(1) bằng
A. - 35 36
B. - 2 3
C. - 19 36
D. - 2 15
Cho hàm số y=f(x) có đạo hàm f ' ( x ) = ( x - 1 ) 2 ( x 2 - 2 x ) với mọi x thuộc R. Có bao nhiêu giá trị nguyên dương của tham số m để hàm số y = f ( x 2 - 8 x + m ) có 5 điểm cực trị?
A. 15
B. 17
C. 16.
D. 18
Cho hàm số y = 2 x - m x + 2 với m là tham số , m ≠ 4 . Tìm giá trị của tham số m thỏa mãn min f ( x ) x ∈ [ 0 ; 2 ] + m a x f ( x ) x ∈ [ 0 ; 2 ] = - 8
A. m= 8
B. m= 9
C. m= -12
D. m= 10
Xét hàm số f ( t ) = 9 t 9 t + m 2 với là m tham số thực. Gọi S là tập hợp tất cả các giá trị của m sao cho f(x) + f(y) =1 với mọi số thực x, y thỏa mãn e x + y ≤ e ( x + y ) . Tìm số phần tử của S.
A. 0
B. 1
C. Vô số
D. 2
Cho hàm số f(x) thỏa mãn f ( 2 ) = - 1 5 và f ' ( x ) = x 3 [ f ( x ) ] 2 với mọi x thuộc R. Giá trị của f(1) bằng
A. - 4 35
B. - 79 20
C. - 4 5
D. - 71 20
Cho hàm số f(x) = \(\dfrac{x^3}{3}-mx^2+\left(m+2\right)x+3\). Có tất cả các giá trị nguyên của tham số m để f'(x) ≥ 0 với mọi thuộc R.