Tìm các giá trị nguyên của x để M=\(\frac{x+2}{x-2}\) nhận giá trị nguyên
Cho biểu thức
M=căn x +1/2
A)Tìm các giá trị nguyên của x để M nhận giá trị nguyên
B)Tìm giá trị lớn nhất của biểu thức M
c)Tìm các giá trị nguyên của x để A nhận giá trị nguyên
Cho biểu thức M = \(\frac{x-1}{x-5}\)
Tìm các giá trị nguyên của x để :
1) M nhận giá trị nguyên
2) M nhận giá trị âm
1) \(M=\frac{x-1}{x-5}=\frac{\left(x-5\right)+4}{x-5}=1+\frac{4}{x-5}\)
Vậy để M nguyên thì \(x-5\inƯ\left(4\right)\)
Mà Ư(4)={1;-1;2;-2;4;-4}
Ta có bảng sau:
x-5 | 1 | -1 | 2 | -2 | 4 | -4 |
x | 6 | 4 | 7 | 3 | 9 | 1 |
Vậy x={1;3;4;6;7;9}
2) Để M âm
\(\Leftrightarrow\)\(\frac{x-1}{x-5}< 0\)
\(\Leftrightarrow\begin{cases}x-1>0\\x-5< 0\end{cases}\) hoặc \(\begin{cases}x-1< 0\\x-5>0\end{cases}\)
\(\Leftrightarrow1< x< 5\)
a) Để M = \(\frac{x-1}{x-5}\) nhận giá trị nguyên
=> x-1 chia hết cho x-5
=> x-5+4 chia hết cho x-5
=> 4 chia hết cho x-5
=> x-5 \(\in\)Ư(4) = {-4;-3;-2;-1;0;1;2;3;4}
Vậy x \(\in\) {1;2;3;4;5;6;7;8;9}
b) Để M nhận giá trị âm
=> x-1 không chia hết cho x-5
....
1 tìm các giá trị nguyên của x để N=\(\frac{3}{\sqrt{x}-2}\) nhận giá trị nguyên
2 tìm giá trị của x nguyên để D=\(\frac{\sqrt{x}-2}{\sqrt{x}-3}\) nguyên
Ta có
\(1D=\frac{\sqrt{x}-2}{\sqrt{x}-3}=1+\frac{1}{\sqrt{x}-3}\)
Để cho D nguyên thì \(\sqrt{x}-3\)phải là ước của 1
\(\Rightarrow\sqrt{x}-3=\left(-1;1\right)\)
=> x = (4; 16)
=> D = (0; 2)
1/ Để N nhận giá trị nguyên thì trước hết \(\sqrt{x}-2\)phải là ước của 3
\(\sqrt{x}-2=\left(-3;-1;1;3\right)\)
Thế vào ta tìm được x = (1; 9; 25)
=> N = (- 3; 3;1)
Dạng: Rút gọn biểu thức chứa căn bậc hai và tìm giá trị của biến để biểu thức nhận giá trị nguyên
\(A=\frac{\sqrt{x}+2}{\sqrt{x}-2}\)
\(B=\frac{x+2}{\sqrt{x}+2}\)
Tìm x nguyên để C= A(B-2) nhận giá trị nguyên
Sau khi tính C= A(B-2)....
mà x nguyên -> x là số chính phương hoặc x ko là số chính phương
th1. x là số chính phương -> (ko bt lm, chắc th này ko tm jj đó)
th2. x ko là số chính phương -> ....
Ai bt lm kiểu như này ko vậy
a) \(A=\dfrac{\sqrt{x}+2}{\sqrt{x}-2}=1+\dfrac{4}{\sqrt{x}-2}\)
Để A nguyên thì 4 ⋮ √x - 2
\(\Rightarrow\sqrt{x}-2\inƯ\left(4\right)\)
\(\Rightarrow\sqrt{x}-2\in\left\{1;-1;2;-2;4;-4\right\}\)
\(\Rightarrow\sqrt{x}\in\left\{3;1;4;0;6;-2\right\}\)
Mà x \(\sqrt{x}\ge0\)
=> x thuộc {9; 1; 16; 0; 36}
b)
Cho biểu thức M = (\(\frac{4}{x^2-4}-\frac{4}{x+4}\)) . \(\frac{x^2+8x+16}{32}\)
a. Tìm điều kiện x để giá trị M có nghĩa
b. tìm giá trị x để giá trị M= \(\frac{1}{3}\)
c. Tìm giá trị x để M =1
d. Tìm giá trị nguyên x để giá biểu thức M nhận giá trị nguyên
a) \(x\ne2;-2;-4\)
b) và c) thì bạn rút gọn M rồi tính
M= \(\frac{1}{x-2}\)-\(\frac{1}{x+2}\)+ \(\frac{x^2+4x}{x^2-4}\)
a, Rút gọn M
b, Tìm các giá trị nguyên của x để M nhận giá trị nguyên
a ) ĐKXĐ : \(x\ne\pm2\)
Ta có : \(M=\frac{1}{x-2}-\frac{1}{x+2}+\frac{x^2+4x}{x^2-4}\)
\(=\frac{x+2}{\left(x-2\right)\left(x+2\right)}-\frac{x-2}{\left(x-2\right)\left(x+2\right)}+\frac{x^2+4x}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x+2-x+2+x^2+4x}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x^2+4x+4}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{\left(x+2\right)^2}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x+2}{x-2}\)
b ) Để \(M\in Z\Leftrightarrow\frac{x+2}{x-2}\in Z\Leftrightarrow x+2⋮x-2\)
\(\Leftrightarrow x-2+4⋮x-2\)
\(\Leftrightarrow4⋮x-2\)
\(\Leftrightarrow x-2\in\left\{1;-1;2;-2;4;-4\right\}\left(x\in Z\Rightarrow x-2\in Z\right)\)
\(\Leftrightarrow x\in\left\{3;1;4;0;6;-2\right\}\)
Vậy \(M\in Z\Leftrightarrow x\in\left\{3;1;4;0;6;-2\right\}\)
:D
b ) \(x\in\left\{3;1;4;0;6\right\}\left(x\ne-2\right)\)
Mik quên :D
Cho M = \(\frac{1}{x-2}\) - \(\frac{1}{x+2}\) +\(\frac{x^2+4x}{x^2-4}\)
a, Rút gọn M
b, Tìm các giá trị nguyên của x để M nhận giá trị nguyên
a. M=\(\frac{1}{x-2}-\frac{1}{x+2}+\frac{x^2+4x}{x^2-4}\)
\(M=\frac{1}{x-2}-\frac{1}{x+2}+\frac{x^2+4x}{\left(x-2\right)\left(x+2\right)}\) MC = (x-2)(x+2)
\(M=\frac{x+2}{\left(x-2\right)\left(x+2\right)}-\frac{x-2}{\left(x+2\right)\left(x-2\right)}+\frac{x^2+4x}{\left(x-2\right)\left(x+2\right)}\)
\(M=\frac{x+2-x+2+x^2+4x}{\left(x-2\right)\left(x+2\right)}\)
\(M=\frac{x^2+4x+4}{\left(x-2\right)\left(x+2\right)}\)
\(M=\frac{\left(x+2\right)^2}{\left(x-2\right)\left(x+2\right)}\)
\(M=\frac{x+2}{x-2}\)
b. Ta có: \(M=\frac{x+2}{x-2}=\frac{x-2+2+2}{x-2}=\frac{x-2+4}{x-2}=\frac{x-2}{x-2}+\frac{4}{x-2}=1+\frac{4}{x-2}\)
Để M đạt giá trị nguyên thì \(\frac{4}{x-2}\) cũng phải đạt giá trị nguyên
\(\Leftrightarrow\left(x-2\right)\inƯ\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
\(\Leftrightarrow x=\left\{3;1;4;0;6;-2\right\}\)
a) \(M=\frac{1}{x-2}-\frac{1}{x+2}+\frac{x^2+4x}{\left(x+2\right)\left(x-2\right)}\)
\(\Rightarrow M=\frac{x+2-\left(x-2\right)+x^2+4x}{\left(x+2\right)\left(x-2\right)}\)
\(\Rightarrow M=\frac{x+2-x+2+x^2+4x}{\left(x+2\right)\left(x-2\right)}\)
\(\Rightarrow M=\frac{x^2+4x+4}{\left(x+2\right)\left(x-2\right)}=\frac{\left(x+2\right)^2}{\left(x+2\right)\left(x-2\right)}=\frac{x+2}{x-2}\)
b) \(\frac{x+2}{x-2}=\frac{x-2+4}{x-2}=\frac{x-2}{x-2}+\frac{4}{x-2}=1+\frac{4}{x-2}\)
\(\Rightarrow x-2\inƯ_4\left\{-4;-2;-1;1;2;4\right\}\)
Ta có :
\(x-2=-4\Rightarrow x=-2\) (loại)
\(x-2=-2\Rightarrow x=0\)
\(x-2=-1\Rightarrow x=1\)
\(x-2=1\Rightarrow x=3\)
\(x-2=2\Rightarrow x=4\)
\(x-2=4\Rightarrow x=6\)
Vậy: Các giá trị của x để \(M\in Z\) là:
\(x=0;1;3;4;6\)
1. Tìm các giá trị nguyên của x để B nhận giá trị nguyên 2.Tìm các giá trị của x để B nhận giá trị nguyên 3. Tìm x biết : (căn x - 2).B + x - 3.căn x + căn 3 - 3x < hoặc bằng 0 B = căn x + 1/căn x - 2 Plsss làm ơn giúp t vs tớ ko bt làm mà cô này hay chửi t lắm huhu
Bài 3. Cho biểu thức Q= \(\frac{1}{x-1}-\frac{x}{x^2+x+1}+\frac{x+2}{1-x^3}\)
a) Tìm điều kiện xác định của Q
b) Tìm giá trị của Q khi x= \(\frac{1}{2}\)
c) Tìm x để Q= 1
d) Tìm giá trị lớn nhất của Q
e) Tìm các giá trị nguyên của x để biểu thức M= \(\left(\frac{x^2+x+1}{x-2}\right).Q\)nhận giá trị nguyên.