tìm txd \(y=\frac{2x-1}{x+1}\)
Tìm txd của hs: y=2x^2 + x + 1
\(y=2x^2+x+1\)
Hàm số trên luôn xác định với mọi \(x\in \mathbb{R}\)
Vậy tập xác định của hàm số trên là \(D={\mathbb{R}}\).
Tìm TXD và TGT của hàm số
1. y=\(\dfrac{-x+5}{2x+3}\)
2. y=\(\dfrac{3x+2}{2x-1}\)
1: ĐKXĐ: \(x\ne-\dfrac{3}{2}\)
2: ĐKXĐ: \(x\ne\dfrac{1}{2}\)
Tìm TXD
\(y=\frac{4cos^2x-1}{tanx-1}\)
Cho biểu thức B = \(\left(\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right).\frac{4x^2-4}{5}\)
a, Tìm TXD
b, Chứng minh rằng khi gía trị của biểu thức được xác định thì nó không phụ thuộc vào giá trị của biến x
trình bày cách làm nữa nha
Tự luận
Câu 1:
a) y = \(\frac{2x^3-3}{4x-3}\)
ĐK: \(4x-3\ne0\Rightarrow4x\ne3\Rightarrow x\ne\frac{3}{4}\)
TXD: D = R / {\(\frac{3}{4}\)}
b) y = \(x-4+\sqrt{5x-1}\)
ĐK: \(5x-1\ge0\Rightarrow5x\ge1\Rightarrow x\ge\frac{1}{5}\)
TXD: D = [\(\frac{1}{5}\); +∞)
Câu 2 Xét tính chẵn lẻ của hàm số: y = \(3x^3-2x\)
TXD: D = R
\(\left\{{}\begin{matrix}x\in D\Rightarrow-x\in D\\f\left(-x\right)=3\left(-x\right)^3-2\left(-x\right)=-3x^3+2x=-f\left(x\right)\end{matrix}\right.\)
=> hàm số y = \(3x^3-2x\) là hàm lẻ
Câu 3 a) (P): \(y=-x^2+2x-4\) (a < 0)
+ Đỉnh I(1;-3)
+ Trục đối xứng: x = 1
+ Giao với Oy là điểm có tọa độ (0; -4)
Bảng biến thiên: Chọn thêm điểm:
| x | -∞ 1 +∞ |
| y |
+∞ +∞
-3 |
Vẽ đồ thị:
\(3x^3-2x\)
tìm txd D của hàm số y = \(\sqrt{\sqrt{x^2+2x+2}-\left(x+1\right)}\)
ĐKXĐ: \(\sqrt{x^2+2x+2}-\left(x+1\right)\ge0\)
\(\Rightarrow\sqrt{x^2+2x+2}\ge x+1\)
Ta có \(\sqrt{x^2+2x+2}=\sqrt{\left(x+1\right)^2+1}>\sqrt{\left(x+1\right)^2}=\left|x+1\right|\ge x+1\)
\(\Rightarrow\sqrt{x^2+2x+2}-\left(x+1\right)>0\) \(\forall x\)
\(\Rightarrow D=R\)
tìm txd của hàm số
y = \(\dfrac{sin\left(x-\dfrac{\pi}{3}\right)}{cos2x+1}+cotx\)
Lời giải:
ĐKXĐ: \(\left\{\begin{matrix}
\cos 2x+1\neq 0\\
\sin x\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}
2x\neq \pm \pi +2k\pi \\
x\neq n\pi \end{matrix}\right.\) với mọi $k,n\in\mathbb{Z}$
\(\Leftrightarrow \left\{\begin{matrix} x\neq \frac{k}{2}\pi, \text{k nguyên lẻ} \\ x\neq n\pi, \text{n nguyên bất kỳ} \end{matrix}\right.\)
Tìm TXD
a) y= sin\(\sqrt{x^2-2x}\)
b) y= \(\dfrac{2sinx}{cos2x-1}\)
\(a,y\)\(=sin\sqrt{x^2-2x}\)
Đkxđ: \(\sqrt{x^2-2x}\in R\)
\(\Leftrightarrow x^2-2x\ge0\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}x\le0\\x\ge2\end{matrix}\right.\)
\(\Rightarrow D:(-\infty;0]\cup[2;+\infty)\)
\(b,y\)\(=\dfrac{2sinx}{cos2x-1}\)
Đkxđ: cos2x-1\(\in R\)
\(\Leftrightarrow cos2x-1\ne0\)
\(\Leftrightarrow x\ne\dfrac{k\pi}{2}\)
\(\Rightarrow D:R\backslash\left\{\dfrac{k\pi}{2};k\in\right\}\)
Bài 1:Cho hàm số
y=f(x) = |2x-1|-|x+1|(1)
a)Tìm TXD,lập BBT và vẽ đồ thị của (1)
b)Tìm m để prtinh |2x-1|-|x+1|=m có nghiệm