giúp mình vs CMR với mọi a,b,c ta có (a^2+2)(b^2+2)(c^2+2)>= 3(a+b+c)^2
CMR với mọi a,b,c ta có
(a^2+2)(b^2+2)(c^2+2)>= 3(a+b+c)^2
(a^2+2)(b^2+2)(c^2+2)
\(=\left(a^2b^2+2a^2+2b^2+4\right)\left(c^2+2\right).\)
\(=a^2b^2c^2+2a^2b^2+2a^2c^2+2b^2c^2+4a^2+4b^2+4c^2\)
\(=a^2b^2c^2+2a^2b^2+2a^2c^2+2b^2c^2+4=a^2b^2c^2+a^2+b^2+c^2-2ab-2bc-2ca+3\left(a^2+b^2+c^2\right)\)
CMR với mọi số thực a,b,c,d ta có (ab+cd)^2 <=(a^2+c^2)*(b^2+d^2)
CMR với mọi số thực a,b,c ta có
a(b-c)(b+c-a)2 + c(a-b)(a+b-c)2 = b(a-c)(a+c-b)2
\(\sqrt{\frac{a^2}{b^2+\left(c+a\right)^2}}+\sqrt{\frac{b^2}{c^2+\left(a+b\right)^2}}+\sqrt{\frac{c^2}{a^2+\left(b+c\right)^2}}\le\frac{3}{\sqrt{5}}\)
với a,b,c là các số thực dương nhé.c/m giúp mình vs mọi người.
cảm ơn ạ.mình cần gấp:))
Áp dụng BĐT bunniacoxki ta có:
\(\left(b^2+\left(c+a\right)^2\right)\left(1+4\right)\ge\left(b+2\left(a+c\right)\right)^2\)
=> \(\sqrt{\frac{a^2}{b^2+\left(c+a\right)^2}}\le\sqrt{5}.\frac{a}{b+2c+2a}\)
=> \(VT\le\sqrt{5}.\left(\frac{a}{b+2c+2a}+\frac{b}{c+2a+2b}+\frac{c}{a+2b+2c}\right)\)
Cần CM \(\frac{a}{b+2c+2a}+\frac{b}{c+2a+2b}+\frac{c}{a+2b+2c}\le\frac{3}{5}\)
<=>\(\left(\frac{1}{2}-\frac{a}{b+2c+2a}\right)+\left(\frac{1}{2}-\frac{b}{c+2a+2b}\right)+\left(\frac{1}{2}-\frac{c}{a+2b+2c}\right)\ge\frac{9}{10}\)
<=>\(\frac{b+2c}{b+2c+2a}+\frac{c+2a}{c+2a+2b}+\frac{a+2b}{a+2b+2c}\ge\frac{9}{5}\)
Áp dụng bđt buniacoxki dạng phân thức ở vế trái:
=> \(VT\ge\frac{\left(b+2c+c+2a+a+2b\right)^2}{\left(b+2c\right)^2+2a\left(b+2c\right)+\left(c+2a\right)^2+2b\left(c+2a\right)+\left(a+2b\right)^2+2c\left(a+2b\right)}\)
\(=\frac{9\left(a+b+c\right)^2}{5\left(a+b+c\right)^2}=\frac{9}{5}\)(ĐPCM)
Dấu bằng xảy ra khi a=b=c
CMR với mọi a,b,c>0 ta có
\(\frac{\left(b+c\right)^2}{b^2+c^2+a\left(b+c\right)}+\frac{\left(a+c\right)^2}{c^2+a^2+b\left(a+c\right)}+\frac{\left(a+b\right)^2}{a^2+b^2+c\left(a+b\right)}\le3\)
Tự cm bđt phụ: \(\frac{\left(m+n\right)^2}{x+y}\le\frac{m^2}{x}+\frac{n^2}{y}\) Với x;y>0
Áp dụng ta có \(\frac{\left(b+c\right)^2}{b^2+c^2+a\left(b+c\right)}\le\frac{b^2}{b^2+ab}+\frac{c^2}{c^2+ab}=\frac{b}{a+b}+\frac{c}{a+c}\)
Tương tự có đpcm
HÃY CHỨNG MINH BẤT ĐẲNG THỨC SAU :
1 ( a+b)^2 > 4ab với mọi a,b
2 cho a<b . cmr : 3-b/2 < 4- a/2
3 a^2 + b^2 + c^2 > ab + bc + ca với mọi a,b,c
4 a ( a-b) + b ( b-c) + c ( c-a) > 0 với mọi a,b,c
5 a^2 + b^2 + c^2 > 1/3 với a+b+c =1
1. (a+b)^2 ≥ 4ab
<=> a2+2ab+b2≥ 4ab
<=> a2+2ab+b2-4ab≥ 0
<=> a2-2ab+b2≥ 0
<=> (a-b)^2 ≥ 0 ( luôn đúng )
2. a^2 + b^2 + c^2 ≥ ab + bc + ca
<=> 2a^2 + 2b^2 + 2c^2 ≥ 2ab + 2bc + 2ca
<=> 2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ca ≥ 0
<=> (a^2- 2ab+b^2) + (b^2-2bc+c^2) + (c^2-2ca+a^2) ≥ 0
<=> (a-b)^2 + (b-c)^2 + (c-a)^2 ≥ 0 ( luôn đúng)
Bài 1: Cho a, b, c thõa mãn 0<a<=b<=c. CMR:
a/b+b/c+c/a>=b/a+c/b+a/c
Bài 2: Cho a, b, c>0 CMR
a/bc+b/ca+c/ab>=2(1/a+1/b+1/c)
Bài 3: CMR với mọi x, y ta có
x^3/x^2+xy+y^2>=(2x-y)/3
a/ Biến đổi tương đương:
\(\Leftrightarrow a^2c+ab^2+bc^2\ge b^2c+ac^2+a^2b\)
\(\Leftrightarrow a^2c-a^2b+ab^2-ac^2+bc^2-b^2c\ge0\)
\(\Leftrightarrow a^2\left(c-b\right)-\left(ab+ac\right)\left(c-b\right)+bc\left(c-b\right)\ge0\)
\(\Leftrightarrow\left(c-b\right)\left(a^2+bc-ab-ac\right)\ge0\)
\(\Leftrightarrow\left(c-b\right)\left(a\left(a-b\right)-c\left(a-b\right)\right)\ge0\)
\(\Leftrightarrow\left(c-b\right)\left(a-c\right)\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(c-b\right)\left(c-a\right)\left(b-a\right)\ge0\) luôn đúng do \(a\le b\le c\)
Vậy BĐT ban đầu đúng
Câu 2: Đề sai, cho \(a=b=c=1\Rightarrow3\ge6\) (sai)
Đề đúng phải là \(\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(VT=\frac{a^2}{abc}+\frac{b^2}{abc}+\frac{c^2}{abc}=\frac{a^2+b^2+c^2}{abc}\ge\frac{ab+ac+bc}{abc}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Câu 3: Không phải với mọi x; y với mọi \(x;y\) dương
Biến đổi tương đương do mẫu số vế phải dương nên ta được quyền nhân chéo:
\(\Leftrightarrow3x^3\ge\left(2x-y\right)\left(x^2+xy+y^2\right)\)
\(\Leftrightarrow3x^3\ge2x^3+x^2y+xy^2-y^3\)
\(\Leftrightarrow x^3+y^3-x^2y-xy^2\ge0\)
\(\Leftrightarrow x^2\left(x-y\right)-y^2\left(x-y\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2-y^2\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\ge0\) (luôn đúng)
các bạn ơi giúp mình bài này với:
chứng minh với mọi a,b,c ta có bất đẳng thức:2a2+b2+c2>=2a(b+c)