CMR với mọi a,b,c ta có
(a^2+2)(b^2+2)(c^2+2)>= 3(a+b+c)^2
\(\sqrt{\frac{a^2}{b^2+\left(c+a\right)^2}}+\sqrt{\frac{b^2}{c^2+\left(a+b\right)^2}}+\sqrt{\frac{c^2}{a^2+\left(b+c\right)^2}}\le\frac{3}{\sqrt{5}}\)
với a,b,c là các số thực dương nhé.c/m giúp mình vs mọi người.
cảm ơn ạ.mình cần gấp:))
CMR với mọi a,b,c>0 ta có
\(\frac{\left(b+c\right)^2}{b^2+c^2+a\left(b+c\right)}+\frac{\left(a+c\right)^2}{c^2+a^2+b\left(a+c\right)}+\frac{\left(a+b\right)^2}{a^2+b^2+c\left(a+b\right)}\le3\)
Cho a,b,c dương , cmr
a) a/b+c + b/c+a + c/a+b > bằng 3/2
b) a^3/b + b^3/c + c^3/a > bằng a^2 + b^2 + c^2
Giúp vs đang cần gấppppp
Cmr: \(\left(a^3+b^3+c^3-3abc\right)^2\le\left(a^2+b^2+c^2\right)^3\) với mọi số thực a,b,c.
Giúp mình bài này với
Cho a+b+c=1
CMR: a^2+b^2+c^2>=1\3
Cho a,b,c dương , cmr :
a^3/b + b^3/c + c^3/a > bằng a^2 + b^2 + c^2
Giúp vs đang cần gấppppp
Mọi người giúp e với
cho a, b, c>0, a+b+c=3 CMR \(\frac{a}{b^2+1}+\frac{b}{c^2+1}+\frac{c}{a^2+1}\ge\frac{3}{2}\)
Chứng minh với mọi a,b,c,d>0 ta có:\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+d^2}+\frac{d^3}{d^2+a^2}\ge\frac{a+b+c+d}{2}\)