\(\sqrt{16-72X+81X^2}\)-2=0
\(\sqrt{4,5x}+\sqrt{50x}-\sqrt{32x}+\sqrt{72x}-5\sqrt{\dfrac{x}{2}}\)-12=0
Ta có: \(\sqrt{4.5x}+\sqrt{50x}-\sqrt{32x}+\sqrt{72x}-5\sqrt{\dfrac{x}{2}}-12=0\)
\(\Leftrightarrow\dfrac{3\sqrt{2}}{2}\sqrt{x}+5\sqrt{2}\sqrt{x}-4\sqrt{2}\sqrt{x}+6\sqrt{2}\sqrt{x}-\dfrac{5\sqrt{2}}{2}\sqrt{x}-12=0\)
\(\Leftrightarrow6\sqrt{2x}=12\)
\(\Leftrightarrow\sqrt{2x}=2\)
\(\Leftrightarrow2x=4\)
hay x=2
72x+72x+3=344 (5-x)(9x2-4)=0 \(\left|2-2x\right|\)-3,75=(-0,5)2
\(\sqrt{x-1}\)+\(\dfrac{2}{3}\)=1 (\(\dfrac{1}{3}\)-\(\dfrac{3}{2}\)x)2=2\(\dfrac{1}{4}\) giúp mình với!!!! cảm ơn nhìu=))❤
(5 - \(x\))(9\(x^2\) - 4) =0
\(\left[{}\begin{matrix}5-x=0\\9x^2-4=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=5\\9x^2=4\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=5\\x^2=\dfrac{4}{9}\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=5\\x=-\dfrac{2}{3}\\x=\dfrac{2}{3}\end{matrix}\right.\)
Vậy \(x\) \(\in\) { - \(\dfrac{2}{3}\); \(\dfrac{2}{3}\); \(5\)}
72\(x\) + 72\(x\) + 3 = 344
72\(x\) \(\times\) ( 1 + 73) = 344
72\(x\) \(\times\) (1 + 343) = 344
72\(x\) \(\times\) 344 = 344
72\(x\) = 344 : 344
72\(x\) = 1
72\(x\) = 70
\(2x\) = 0
\(x\) = 0
Kết luận: \(x\) = 0
|2 - 2\(x\)| - 3,75 = (-0,5)2
|2 - 2\(x\)| - 3,75 = 0,25
|2- 2\(x\)| =0,25 + 3,75
|2 - 2\(x\)| = 4
\(\left[{}\begin{matrix}2-2x=-4\left(x>1\right)\\2-2x=4\left(x< 1\right)\end{matrix}\right.\)
\(\left[{}\begin{matrix}2x=6\left(x\ge1\right)\\2x=-2\left(x\le1\right)\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
Kết luận: \(x\) \(\in\) { -1; 3}
Giải phương trình:
\(\sqrt{4.5x^{ }}+\sqrt{50x}-\sqrt{32x}+\sqrt{72x}-5\cdot\sqrt{\dfrac{x}{2}}-12=0\)
\(\Leftrightarrow\dfrac{3}{2}\sqrt{2x}+5\sqrt{2x}-4\sqrt{2x}+6\sqrt{2x}-\dfrac{5}{2}\sqrt{2x}-12=0\)
\(\Leftrightarrow6\sqrt{2x}=12\)
=>2x=4
hay x=2
giải phương trình:
\(\sqrt{4.5x}\)+\(\sqrt{50x}-\sqrt{32x}+\sqrt{72x}-5\cdot\sqrt{\frac{x}{2}}\)-12=0
\(\Leftrightarrow\frac{3}{2}\sqrt{2x}+5\sqrt{2x}-4\sqrt{2x}+6\sqrt{2x}-\frac{5}{2}\sqrt{2x}=12\Leftrightarrow6\sqrt{2x}=12\Leftrightarrow\sqrt{2x}=2\Leftrightarrow x=2.\)
\(\sqrt{81x-81}+\sqrt{16x-16}+\sqrt{9x-9}+\sqrt{x-1}=\)
Tìm x :
h/ \(\sqrt{x+5}-10=-4\)
i/ \(\sqrt{x-5}+2\sqrt{4x-20}-\frac{1}{3}\sqrt{9x-45}=12\)
j/ \(3\sqrt{2x}+\frac{1}{7}\sqrt{98x}-\sqrt{72x}+4=0\)
k/ \(\sqrt{4x^2-20}-\frac{1}{3}\sqrt{x^2-5}+\sqrt{\frac{9x^2-45}{16}}-\frac{1}{2}\sqrt{\frac{25x^2-125}{36}}=4\)
l/ \(\sqrt{4x+4}+\sqrt{9x+9}-\sqrt{x+1}=4\)
m/ \(\sqrt{16\left(x+1\right)}+\sqrt{4x+4}=16-\sqrt{x+1}+\sqrt{9x+9}\)
Giúp mk với nhé mn
h)
ĐKXĐ: $x\geq -5$
PT $\Leftrightarrow \sqrt{x+5}=6$
$\Rightarrow x+5=36\Rightarrow x=31$ (thỏa mãn)
i) ĐKXĐ: $x\geq 5$
PT \(\Leftrightarrow \sqrt{x-5}+4\sqrt{x-5}-\sqrt{x-5}=12\)
\(\Leftrightarrow 4\sqrt{x-5}=12\Leftrightarrow \sqrt{x-5}=3\Rightarrow x-5=9\Rightarrow x=14\) (thỏa mãn)
j)
ĐKXĐ: $x\geq 0$
PT $\Leftrightarrow 3\sqrt{2x}+\sqrt{2x}-6\sqrt{2x}+4=0$
$\Leftrightarrow -2\sqrt{2x}+4=0$
$\Leftrightarrow \sqrt{2x}=2$
$\Rightarrow x=2$ (thỏa mãn)
k) ĐK: $x^2\geq 5$
PT $\Leftrightarrow 2\sqrt{x^2-5}-\frac{1}{3}\sqrt{x^2-5}+\frac{3}{4}\sqrt{x^2-5}-\frac{5}{12}\sqrt{x^2-5}=4$
$\Leftrightarrow 2\sqrt{x^2-5}=4$
$\Leftrightarrow \sqrt{x^2-5}=2$
$\Rightarrow x^2-5=4$
$\Leftrightarrow x^2=9\Rightarrow x=\pm 3$ (đều thỏa mãn)
l) ĐKXĐ: $x\geq -1$
PT $\Leftrightarrow 2\sqrt{x+1}+3\sqrt{x+1}-\sqrt{x+1}=4$
$\Leftrightarrow 4\sqrt{x+1}=4$
$\Leftrightarrow \sqrt{x+1}=1$
$\Rightarrow x+1=1$
$\Rightarrow x=0$
m)
ĐKXĐ: $x\geq -1$
PT $\Leftrightarrow 4\sqrt{x+1}+2\sqrt{x+1}=16-\sqrt{x+1}+3\sqrt{x+1}$
$\Leftrightarrow 6\sqrt{x+1}=16+2\sqrt{x+1}$
$\Leftrightarrow 4\sqrt{x+1}=16$
$\Leftrightarrow \sqrt{x+1}=4$
$\Rightarrow x=15$ (thỏa mãn)
\(tìmMinP=\frac{81x^2+18225x+1}{9x}-\frac{6\sqrt{x}+8}{x+1}vớix>0\)
Tìm x
a) \(9x^2-72x=0\)
b) (16 -4x) (x+3) - (x+1) (4-4x) = 40
a,\(9x^2-72x=0\)
\(9x\left(x-8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}9x=0\\x-8=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=8\end{matrix}\right.\)
Vậy...
a
\(9x^2-72x=0\\ \Leftrightarrow9x\left(x-8\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=8\end{matrix}\right.\)
b)
\(\left(16-4x\right)\left(x+3\right)-\left(x+1\right)\left(4-4x\right)=40\\ \Leftrightarrow\left(16x+48-4x^2-12x\right)-\left(4x-4x^2+4-4x\right)=40\\ \Leftrightarrow4x+44=40\\ \Leftrightarrow x=-1\)
\(\left(16-4x\right)\left(x+3\right)-\left(x+1\right)\left(4-4x\right)=40\)
\(16x-4x^2+48-12x-4x+4x^2-4+4x=40\)
\(4x+44=40\)
\(\Rightarrow x=-1\)
Vậy x=-1
Tìm MIN của \(P=\frac{81x^2+18225x+1}{9x}-\frac{6\sqrt{x}+8}{x+1},x>0\)
tìm GTNN của \(P=\frac{81x^2+18225x+1}{9x}-\frac{6\sqrt{x}+8}{x+1}\) với x>0